cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A215038 Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.

Original entry on oeis.org

0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0

Views

Author

Wolfdieter Lang, Aug 09 2012

Keywords

Comments

For a derivation of the explicit form of this sum see the link under A215308 on the partial summation formula, eq. (7).

Examples

			a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
		

Crossrefs

Formula

a(n) = Sum_{k=0..n} A066259(k) = Sum_{k=0..n} F(k+1)^2*F(k), n >= 0, with A066259(0)=0.
a(n) = (F(n+2)*F(n+1)^2 - (-1)^n*F(n) - 1)/2 = (A066258(n+1) - (-1)^n*A008346(n))/2, n >= 0.
O.g.f.: x*(1+x)/((1+x-x^2)*(1-4*x-x^2)*(1-x)) (from A066259).
E.g.f.: (2*exp(-x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)) + exp(2*x)*(15*cosh(sqrt(15)*x) + 7*sqrt(5)*sinh(sqrt(5)*x)) - 25*exp(x))/50. - Stefano Spezia, Oct 28 2024

A056570 Third power of Fibonacci numbers (A000045).

Original entry on oeis.org

0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).
In general, cubing the terms of a Horadam sequence with signature (c,d) will result in a fourth-order recurrence with signature (c^3+2*c*d, c^4*d+3*(c*d)^2+2*d^3, -(c*d)^3-2*c*d^4, -d^6). - Gary Detlefs, Nov 12 2021
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using (1/3,2/3)-fences and third-squares (1/3 X 1 pieces, always placed so that the shorter sides are horizontal). A (w,g)-fence is a tile composed of two w X 1 pieces separated by a gap of width g. a(n+1) also equals the number of tilings of an n-board using (1/6,1/3)-fences and (1/6,5/6)-fences. - Michael A. Allen, Jan 11 2022

Examples

			a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Cf. A346513 (first differences), A005968 (partial sums).
Third row of array A103323.

Programs

Formula

a(n) = A000045(n)^3.
G.f.: x*p(3, x)/q(3, x) with p(3, x) = Sum_{m=0..2} A056588(2, m)*x^m = 1 -2*x -x^2 and q(3, x) = Sum_{m=0..4} A055870(4, m)*x^m = 1 -3*x -6*x^2 +3*x^3 +x^4 = (1+x-x^2)*(1-4*x-x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): 1*a(n) -3*a(n-1) -6*a(n-2) +3*a(n-3) +1*a(n-4) = 0, n >= 4, a(0)=0, a(1)=a(2)=1, a(3)=2^3. See 5th row of signed Fibonomial triangle for coefficients: A055870(4, m), m=0..4
a(n) = (Fibonacci(3n) - 3(-1)^n*Fibonacci(n))/5. - Ralf Stephan, May 14 2004
a(n) and a(n+1) are found as rightmost and leftmost terms (respectively) in M^n * [1 0 0 0] where M = the 4 X 4 upper triangular Pascal's triangle matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., Ma(4) = 27, a(5) = 125. M^4 * [1 0 0 0] = [125 75 45 27]; where 75 = A066259(4) and 45 = A066258(3). The characteristic polynomial of M = x^4 - 3x^3 - 6x^2 + 3x + 1. a(n)/a(n-1) of the sequence and companions tend to 2+sqrt(5) = 4.2360679..., an eigenvalue of M and a root of the polynomial. - Gary W. Adamson, Oct 31 2004
From R. J. Mathar, Oct 16 2006: (Start)
Sum_{j=0..n} binomial(n,j)*a(j) = (2^n*A001906(n) + 3*A000045(n))/5.
Sum_{j=0..n} (-1)^j*binomial(n,j)*a(j) = ((-2)^n*A000045(n) - 3*A001906(n))/5. (End)
G.f.: x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)). - Colin Barker, Feb 28 2012
a(n) = F(n-2)*F(n+1)^2 + F(n-1)*(-1)^n. - J. M. Bergot, Mar 17 2016
a(n) = ((-3*(1/2*(-1-sqrt(5)))^n-(2-sqrt(5))^n+3*(1/2*(-1+sqrt(5)))^n+(2+sqrt(5))^n)) / (5*sqrt(5)). - Colin Barker, Jun 04 2016
a(n) = F(n-1)*F(n)*F(n+1) + F(n)*(-1)^(n-1). - Tony Foster III, Apr 11 2018
5*a(n) = L(2*n-1)*F(n+2) - L(2*n+1)*F(n-2) - 7*(-1)^n*F(n), where L(n) = A000032(n). - Peter Bala, Nov 12 2019
F(n+1)*F(n)*F(n-1) = 2*Sum_{j=1..n-1} P(j)*a(n-j) for n>0, where Pell number P(n) = A000129(n). - Michael A. Allen, Jan 11 2022

A066258 a(n) = Fibonacci(n)^2 * Fibonacci(n+1).

Original entry on oeis.org

0, 1, 2, 12, 45, 200, 832, 3549, 14994, 63580, 269225, 1140624, 4831488, 20466953, 86698690, 367262700, 1555747893, 6590256856, 27916771136, 118257348165, 500946152850, 2122041977276, 8989114033297, 38078498156832, 161303106585600, 683290924620625, 2894466804871682
Offset: 0

Views

Author

Len Smiley, Dec 09 2001

Keywords

Comments

From Feryal Alayont, Apr 27 2023: (Start)
a(n) is the number of edge covers of a caterpillar graph with spine P_(3n-2), one pendant attached at vertex n counting from the left end of the spine and another pendant at vertex 2n-1. The caterpillar graph for n=3 is as follows:
* *
| |
*--*--*--*--*--*--*
v
Each pendant edge must be included in an edge cover. Every vertex except v is then incident with at least one edge. Therefore, of the remaining four edges in the spine, only two in the middle have restrictions. At least one of those two has to be in the edge cover to ensure v is incident with one edge in the edge cover, leaving us with 3*2*2 total edge covers. (End)

Crossrefs

First differences of A001655.

Programs

  • Magma
    [Fibonacci(n)^2*Fibonacci(n+1): n in [0..30]]; // G. C. Greubel, Feb 12 2024
    
  • Mathematica
    #[[1]]^2 #[[2]]&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[ {3,6,-3,-1},{0,1,2,12},30] (* Harvey P. Dale, Jul 28 2018 *)
  • PARI
    a(n) = { fibonacci(n)^2 * fibonacci(n+1) } \\ Harry J. Smith, Feb 07 2010
    
  • SageMath
    [fibonacci(n)^2*fibonacci(n+1) for n in range(31)] # G. C. Greubel, Feb 12 2024

Formula

O.g.f.: x*(1-x) / ( (1-4*x-x^2)*(1+x-x^2) ).
a(n) = second term from right in M^(n+1) * [1 0 0 0], where M = the 4 X 4 upper Pascal's triangular matrix [1 3 3 1 / 1 2 1 0 / 1 1 0 0 / 1 0 0 0]. E.g., a(3) = 45 since M^4 * [1 0 0 0] = [125 75 45 27] where 125 = A056570(5), 75 = A066259(4) and 27 = A056570(4). - Gary W. Adamson, Oct 31 2004
a(n) = (1/5)*(Fibonacci(3n+1) - (-1)^n*Fibonacci(n+2)). - Ralf Stephan, Jul 26 2005
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). - Zak Seidov, May 07 2015

A099014 a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2).

Original entry on oeis.org

0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,3)-element of A^n.

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
    Join[{0},#[[2]](#[[1]]^2+#[[3]]^2)&/@Partition[Fibonacci[ Range[ 0,30]],3,1]] (* or *) LinearRecurrence[{3,6,-3,-1},{0,1,5,20},30] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011

Formula

G.f.: x*(1+2*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4) = x*(1+2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = Sum_{k=0..n} (-1)^(k+1)*Fib(k)*(0^(n-k) + 6*A001076(n-k)).
a(n) = ((-1)^n*Fib(n) + 3*Fib(3*n))/5. - Ehren Metcalfe, May 21 2016

A099015 a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).

Original entry on oeis.org

1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Form the matrix A=[1,1,1,1;3,2,1,0;3,1,0,0;1,0,0,0]=(binomial(3-j,i)). Then a(n)=(2,2)-element of A^n.

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
    
  • Mathematica
    LinearRecurrence[{3,6,-3,-1},{1,2,8,33},30] (* Harvey P. Dale, Nov 28 2015 *)
    CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    a(n)=my(e=fibonacci(n-1),f=fibonacci(n));(e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05 2011
    
  • PARI
    first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017

Formula

G.f.: (1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)).
G.f.: (1-x-4*x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = (3*Fib(3*n+1) + (-1)^n*Fib(n-3))/5.
a(n) = (2+sqrt(5))^n*(3/10 + 3*sqrt(5)/50) + (2-sqrt(5))^n*(3/10 - 3*sqrt(5)/50) + (-1)^n*((1/2 - sqrt(5)/2)^n*(1/5 + 2*sqrt(5)/25) + (1/5 - 2*sqrt(5)/25)*(1/2 + sqrt(5)/2)^n).

A220360 a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(n+2).

Original entry on oeis.org

0, 6, 15, 80, 312, 1365, 5712, 24310, 102795, 435744, 1845360, 7817849, 33115680, 140282310, 594242103, 2517255280, 10663255848, 45170290605, 191344398960, 810547917686, 3433536019155, 14544692076096, 61612304191200, 260993909055025, 1105587940064832
Offset: 1

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type A have sides A066259(n+1), a(n+1), A066259(n+1), a(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), A220361(n+2), A056570(n+2), A056570(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Table[Fibonacci[n - 1]*Fibonacci[n + 1]*Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
    #[[1]]#[[3]]#[[4]]&/@Partition[Fibonacci[Range[0,30]],4,1] (* Harvey P. Dale, Apr 08 2022 *)
  • PARI
    a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(n+2); \\ Michel Marcus, Mar 26 2016
    
  • PARI
    x='x+O('x^99); concat(0, Vec((6*x-3*x^2-x^3)/(1-3*x-6*x^2+3*x^3+x^4))) \\ Altug Alkan, Mar 26 2016

Formula

G.f.: (6*x - 3*x^2 - x^3)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4); a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4). [Ron Knott, Jun 27 2013]
Sum {n >= 2} 1/a(n) = 1/4. - Peter Bala, Nov 30 2013
a(n) = 4*(-1)^n*F(n-1)/5 + (-1)^n*F(n) + F(3*n+2)/5 with F=A000045. - Ehren Metcalfe, Mar 26 2016

A220361 a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n-2).

Original entry on oeis.org

1, 7, 28, 123, 515, 2192, 9269, 39291, 166396, 704935, 2986039, 12649248, 53582777, 226980767, 961505180, 4073002563, 17253513691, 73087060144, 309601749709, 1311494066355, 5555578003196, 23533806098447, 99690802365743, 422297015611968, 1788878864731825
Offset: 2

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons. Type A have sides A066259(n+1), A220360(n+1), A066259(n+1), A220360(n+1), A066259(n+1), and opposite diagonals A056570(n+2), A056570(n+2), A220361(n+2), A056570(n+2), A056570(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Programs

  • Maple
    with(combinat): A220361:=n->fibonacci(n)^3+(-1)^n*fibonacci(n-2): seq(A220361(n), n=2..30); # Wesley Ivan Hurt, Apr 26 2017
  • Mathematica
    Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n - 2], {n, 2, 30}] (* T. D. Noe, Dec 13 2012 *)
    LinearRecurrence[{3,6,-3,-1},{1,7,28,123},30] (* Harvey P. Dale, Jul 13 2021 *)
  • PARI
    Vec(x^2*(x^2+4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
    
  • PARI
    a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n-2) \\ Charles R Greathouse IV, Feb 14 2017

Formula

a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: x^2*(x^2+4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014
Showing 1-7 of 7 results.