A215038
Partial sums of A066259: a(n) = Sum_{k=0..n} F(k+1)^2*F(k), n>=0, with the Fibonacci numbers F=A000045.
Original entry on oeis.org
0, 1, 5, 23, 98, 418, 1770, 7503, 31779, 134629, 570284, 2415788, 10233404, 43349461, 183631161, 777874251, 3295127934, 13958386366, 59128672790, 250473078515, 1061020985255, 4494557022121, 19039249069560, 80651553307128
Offset: 0
a(2) = 0 + 1^2*1 + 2^2*1 = 1 + 4 = 5.
A056570
Third power of Fibonacci numbers (A000045).
Original entry on oeis.org
0, 1, 1, 8, 27, 125, 512, 2197, 9261, 39304, 166375, 704969, 2985984, 12649337, 53582633, 226981000, 961504803, 4073003173, 17253512704, 73087061741, 309601747125, 1311494070536, 5555577996431, 23533806109393, 99690802348032, 422297015640625
Offset: 0
a(4) = 27 because the fourth Fibonacci number is 3 and 3^3 = 27.
a(5) = 125 because the fifth Fibonacci number is 5 and 5^3 = 125.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..173
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
- Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- Andrej Dujella, A bijective proof of Riordan's theorem on powers of Fibonacci numbers, Discrete Math. 199 (1999), no. 1-3, 217--220. MR1675924 (99k:05016).
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers cubed, Fib. Q. 58:5 (2020) 128-134.
- D. Foata and G.-N. Han, Nombres de Fibonacci et polynomes orthogonaux
- Mariana Nagy, Simon R. Cowell and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop and Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n)^3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
A056570 := proc(n) combinat[fibonacci](n)^3 ; end proc:
seq(A056570(n),n=0..20) ;
-
Table[Fibonacci[n]^3, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2008 *)
-
a(n)=fibonacci(n)^3 \\ Charles R Greathouse IV, Sep 24 2015
-
concat(0, Vec(x*(1-2*x-x^2)/((1+x-x^2)*(1-4*x-x^2)) + O(x^30))) \\ Colin Barker, Jun 04 2016
-
[fibonacci(n)^3 for n in (0..30)] # G. C. Greubel, Feb 20 2019
A066258
a(n) = Fibonacci(n)^2 * Fibonacci(n+1).
Original entry on oeis.org
0, 1, 2, 12, 45, 200, 832, 3549, 14994, 63580, 269225, 1140624, 4831488, 20466953, 86698690, 367262700, 1555747893, 6590256856, 27916771136, 118257348165, 500946152850, 2122041977276, 8989114033297, 38078498156832, 161303106585600, 683290924620625, 2894466804871682
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- David Zeitlin, Generating Functions for Products of Recursive Sequences, Transactions A.M.S., 116, Apr. 1965, p. 304.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
[Fibonacci(n)^2*Fibonacci(n+1): n in [0..30]]; // G. C. Greubel, Feb 12 2024
-
#[[1]]^2 #[[2]]&/@Partition[Fibonacci[Range[0,30]],2,1] (* or *) LinearRecurrence[ {3,6,-3,-1},{0,1,2,12},30] (* Harvey P. Dale, Jul 28 2018 *)
-
a(n) = { fibonacci(n)^2 * fibonacci(n+1) } \\ Harry J. Smith, Feb 07 2010
-
[fibonacci(n)^2*fibonacci(n+1) for n in range(31)] # G. C. Greubel, Feb 12 2024
A099014
a(n) = Fibonacci(n)*(Fibonacci(n-1)^2 + Fibonacci(n+1)^2).
Original entry on oeis.org
0, 1, 5, 20, 87, 365, 1552, 6565, 27825, 117844, 499235, 2114729, 8958240, 37947545, 160748653, 680941780, 2884516383, 12219006325, 51760543280, 219261176861, 928805254905, 3934482189716, 16666734024715, 70601418270865
Offset: 0
-
[Fibonacci(n)*(Fibonacci(n-1)^2+Fibonacci(n+1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
CoefficientList[Series[x*(1 + 2*x - x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
Join[{0},#[[2]](#[[1]]^2+#[[3]]^2)&/@Partition[Fibonacci[ Range[ 0,30]],3,1]] (* or *) LinearRecurrence[{3,6,-3,-1},{0,1,5,20},30] (* Harvey P. Dale, Oct 17 2021 *)
-
a(n)=fibonacci(n)*(fibonacci(n-1)^2+fibonacci(n+1)^2) \\ Charles R Greathouse IV, Jun 05 2011
A099015
a(n) = Fib(n+1)*(2*Fib(n)^2 + Fib(n)*Fib(n-1) + Fib(n-1)^2).
Original entry on oeis.org
1, 2, 8, 33, 140, 592, 2509, 10626, 45016, 190685, 807764, 3421728, 14494697, 61400482, 260096680, 1101787113, 4667245276, 19770767984, 83750317589, 354772037730, 1502838469496, 6366125914117, 26967342128548
Offset: 0
-
[Fibonacci(n+1)*(2*Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2): n in [0..30]]; // Vincenzo Librandi, Jun 05 2011
-
LinearRecurrence[{3,6,-3,-1},{1,2,8,33},30] (* Harvey P. Dale, Nov 28 2015 *)
CoefficientList[Series[(1-x-4*x^2)/((1+x-x^2)*(1-4*x-x^2)), {x, 0, 50}], x] (* G. C. Greubel, Dec 31 2017 *)
-
a(n)=my(e=fibonacci(n-1),f=fibonacci(n));(e+f)*(2*f^2+f*e+e^2) \\ Charles R Greathouse IV, Jun 05 2011
-
first(n) = Vec((1 - x - 4*x^2)/(1 - 3*x - 6*x^2 + 3*x^3 + x^4) + O(x^n)) \\ Iain Fox, Dec 31 2017
A220360
a(n) = Fibonacci(n-1) * Fibonacci(n+1) * Fibonacci(n+2).
Original entry on oeis.org
0, 6, 15, 80, 312, 1365, 5712, 24310, 102795, 435744, 1845360, 7817849, 33115680, 140282310, 594242103, 2517255280, 10663255848, 45170290605, 191344398960, 810547917686, 3433536019155, 14544692076096, 61612304191200, 260993909055025, 1105587940064832
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, D20.
-
Table[Fibonacci[n - 1]*Fibonacci[n + 1]*Fibonacci[n + 2], {n, 30}] (* T. D. Noe, Dec 13 2012 *)
#[[1]]#[[3]]#[[4]]&/@Partition[Fibonacci[Range[0,30]],4,1] (* Harvey P. Dale, Apr 08 2022 *)
-
a(n) = fibonacci(n-1) * fibonacci(n+1) * fibonacci(n+2); \\ Michel Marcus, Mar 26 2016
-
x='x+O('x^99); concat(0, Vec((6*x-3*x^2-x^3)/(1-3*x-6*x^2+3*x^3+x^4))) \\ Altug Alkan, Mar 26 2016
A220361
a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n-2).
Original entry on oeis.org
1, 7, 28, 123, 515, 2192, 9269, 39291, 166396, 704935, 2986039, 12649248, 53582777, 226980767, 961505180, 4073002563, 17253513691, 73087060144, 309601749709, 1311494066355, 5555578003196, 23533806098447, 99690802365743, 422297015611968, 1788878864731825
Offset: 2
- R. K. Guy, Unsolved Problems in Number Theory, D20.
- Indranil Ghosh, Table of n, a(n) for n = 2..1593
- J. H. Jordan, B. E. Peterson, Almost regular integer Fibonacci pentagons, Rocky Mountain J. Math. Volume 23, Number 1 (1993), 243-247.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
-
with(combinat): A220361:=n->fibonacci(n)^3+(-1)^n*fibonacci(n-2): seq(A220361(n), n=2..30); # Wesley Ivan Hurt, Apr 26 2017
-
Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n - 2], {n, 2, 30}] (* T. D. Noe, Dec 13 2012 *)
LinearRecurrence[{3,6,-3,-1},{1,7,28,123},30] (* Harvey P. Dale, Jul 13 2021 *)
-
Vec(x^2*(x^2+4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
-
a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n-2) \\ Charles R Greathouse IV, Feb 14 2017
Showing 1-7 of 7 results.
Comments