cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220363 a(n) = Fibonacci(n)^3 + (-1)^n*Fibonacci(n+2).

Original entry on oeis.org

1, -1, 4, 3, 35, 112, 533, 2163, 9316, 39215, 166519, 704736, 2986361, 12648727, 53583620, 226979403, 961507387, 4072998992, 17253519469, 73087050795, 309601764836, 1311494041879, 5555578042799, 23533806034368, 99690802469425, 422297015444207
Offset: 0

Views

Author

Michel Marcus, Dec 12 2012

Keywords

Comments

An integral pentagon is a pentagon with integer sides and diagonals. There are two types of such pentagons.
Type B have sides A056570(n+2), A056570(n+2), a(n+2), A056570(n+2), A056570(n+2), and opposite diagonals A220362(n+2), A066258(n+2), A066258(n+2), A066258(n+2), A220362(n+2), for n=1,2,...

References

  • R. K. Guy, Unsolved Problems in Number Theory, D20.

Programs

  • Mathematica
    Table[Fibonacci[n]^3 + (-1)^n * Fibonacci[n + 2], {n, 0, 30}] (* T. D. Noe, Dec 13 2012 *)
    LinearRecurrence[{3,6,-3,-1},{1,-1,4,3},30] (* Harvey P. Dale, Mar 19 2022 *)
  • PARI
    Vec((x^2-4*x+1)/((x^2-x-1)*(x^2+4*x-1)) + O(x^100)) \\ Colin Barker, Sep 23 2014
    
  • PARI
    a(n) = fibonacci(n)^3 + (-1)^n*fibonacci(n+2) \\ Charles R Greathouse IV, Feb 14 2017

Formula

a(n) = 3*a(n-1)+6*a(n-2)-3*a(n-3)-a(n-4). G.f.: (x^2-4*x+1) / ((x^2-x-1)*(x^2+4*x-1)). - Colin Barker, Sep 23 2014

A226958 a(n) = Fibonacci(n-2)*Fibonacci(n)*Fibonacci(n+2).

Original entry on oeis.org

2, 0, 10, 24, 130, 504, 2210, 9240, 39338, 166320, 705058, 2985840, 12649570, 53582256, 226981610, 961503816, 4073004770, 17253510120, 73087065922, 309601740360, 1311494081482, 5555577978720, 23533806138050, 99690802301664, 422297015715650, 1788878864564064, 7577812474943050
Offset: 1

Views

Author

Ron Knott, Jun 27 2013

Keywords

Examples

			a(3) = F(1)*F(3)*F(5) = 1*2*5 = 10.
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).
Products of 3 Fibonaccis: A065563, A056570, A220362, A110224.

Programs

  • Mathematica
    Table[Fibonacci[n - 2] Fibonacci[n] Fibonacci[n + 2], {n, 1, 20}]
    LinearRecurrence[{3,6,-3,-1},{2,0,10,24},30] (* Harvey P. Dale, Apr 10 2022 *)
    Join[{2},#[[1]]#[[3]]#[[5]]&/@Partition[Fibonacci[Range[0,40]],5,1]] (* Harvey P. Dale, May 20 2025 *)
  • PARI
    a(n)=fibonacci(n-2)*fibonacci(n)*fibonacci(n+2); \\ Joerg Arndt, Jul 07 2013

Formula

a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
G.f.: 2*(1-3*x-x^2)/(1-3*x-6*x^2+3*x^3+x^4).
a(n) = Lucas(n-1)*Fibonacci(n+2) = Fibonacci(n-2)*Lucas(n+1).
a(n) = (1/5)*(Fibonacci(3*n)-8*(-1)^n*Fibonacci(n)). - Ehren Metcalfe, Mar 26 2016
For n >= 3, a(n) is the numerator of the continued fraction [1,..,1, 3 ,1,..,1, 3 ,1,..,1] with three runs of 1's each of length n-3 and each separated by a single 3. For example, a(5)=130 which is the numerator of the continued fraction [1,1, 3 ,1,1, 3 ,1,1]. - Greg Dresden, Jan 01 2022

Extensions

More terms from Joerg Arndt, Jul 07 2013
Showing 1-2 of 2 results.