cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065563 Product of three consecutive Fibonacci numbers.

Original entry on oeis.org

2, 6, 30, 120, 520, 2184, 9282, 39270, 166430, 704880, 2986128, 12649104, 53583010, 226980390, 961505790, 4073001576, 17253515288, 73087057560, 309601753890, 1311494059590, 5555578014142, 23533806080736, 99690802394400, 422297015565600, 1788878864806850, 7577812474550214
Offset: 1

Views

Author

Len Smiley, Nov 30 2001

Keywords

References

  • Mohammad K. Azarian, Fibonacci Identities as Binomial Sums II, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 42, 2012, pp. 2053-2059.
  • Mohammad K. Azarian, Fibonacci Identities as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876.
  • T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 89, No. 32, with a minus sign.

Crossrefs

Programs

  • Magma
    [&*[Fibonacci(n+k): k in [0..2] ]: n in [1..30]]; // Vincenzo Librandi, Apr 09 2020
  • Maple
    with (combinat):a:=n->fibonacci(n)*fibonacci(n+1)*fibonacci(n+2): seq(a(n), n=1..22); # Zerinvary Lajos, Oct 07 2007
  • Mathematica
    Times@@@Partition[Fibonacci[Range[30]],3,1] (* Harvey P. Dale, Aug 18 2011 *)
  • PARI
    a(n) = { fibonacci(n)*fibonacci(n + 1)*fibonacci(n + 2) } \\ Harry J. Smith, Oct 22 2009
    

Formula

a(n) = A000045(n)*A000045(n+1)*A000045(n+2).
G.f.: 2/(1 - 3*x - 6*x^2 + 3*x^3 + x^4).
a(n) = 2*A001655(n).
a(n) = Fibonacci(n+1)^3-(-1)^n*Fibonacci(n+1). - Gary Detlefs, Feb 02 2011
This corrects a sign mistake in the Koshy reference. - Wolfdieter Lang, Aug 07 2012
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4).
O.g.f.: 2*x/((1 + x - x^2)*(1 - 4*x - x^2)) (compare with A001655). - Wolfdieter Lang, Aug 06 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = A079586 - 3. - Amiram Eldar, Oct 04 2020
Sum_{n>=1} 1/a(n) = A324007. - Amiram Eldar, Feb 09 2023

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 22 2009

A158933 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/F(n) where F(n) is the n-th Fibonacci number A000045(n).

Original entry on oeis.org

2, 8, 9, 1, 4, 4, 6, 4, 8, 5, 7, 0, 6, 7, 1, 5, 8, 3, 1, 1, 2, 3, 0, 5, 5, 0, 9, 6, 1, 5, 7, 2, 9, 1, 6, 6, 9, 5, 4, 8, 8, 1, 9, 5, 1, 5, 8, 9, 6, 9, 1, 3, 6, 0, 0, 2, 5, 0, 2, 6, 4, 8, 5, 0, 6, 3, 0, 3, 5, 7, 6, 1, 7, 3, 8, 8, 6, 4, 5, 5, 1, 5, 8, 2, 4, 1, 1, 5, 8, 3, 1, 8, 2, 8, 5
Offset: 0

Views

Author

Michel Lagneau, Mar 26 2011

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)). - Amiram Eldar, Oct 30 2020

Examples

			0.2891446485706715831123055096157291669...
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):Digits:=100:s:=0:for n from 1 to 2000 do: a1:=fibonacci(n):s:=s+evalf(1/a1)*(-1)^(n+1):od:print(s):
  • Mathematica
    digits = 95; NSum[(-1)^(n+1)*(1/Fibonacci[n]), {n, 1, Infinity}, WorkingPrecision -> digits+1, NSumTerms -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    -sumalt(n=1,(-1)^n/fibonacci(n)) \\ Charles R Greathouse IV, Oct 03 2016

Formula

Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) + (-1)^k), where phi is the golden ratio (A001622). - Amiram Eldar, Oct 04 2020
Equals A153387 - A153386. - Joerg Arndt, Oct 04 2020
Equals 1 - A324007. - Amiram Eldar, Feb 09 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Jun 28 2011

A324008 Decimal expansion of the sum of reciprocals of the products of k consecutive Fibonacci numbers, k>0.

Original entry on oeis.org

6, 0, 9, 2, 2, 4, 3, 4, 4, 7, 4, 3, 4, 4, 4, 2, 1, 1, 2, 1, 1, 7, 3, 8, 7, 3, 7, 6, 3, 0, 4, 0, 4, 1, 3, 1, 4, 6, 2, 7, 5, 2, 4, 3, 0, 7, 2, 8, 4, 7, 5, 5, 2, 3, 6, 7, 8, 8, 5, 5, 1, 4, 2, 9, 0, 3, 3, 5, 7, 9, 6, 5, 5, 2, 8, 6, 4, 6, 8, 1, 7, 4, 4, 5, 6, 8, 0, 7, 9, 1, 6, 7, 7, 3, 6, 1, 4, 5, 1, 4, 4, 7, 4, 6, 5
Offset: 1

Views

Author

Robert G. Wilson v, Feb 11 2019

Keywords

Comments

Start of Array, the decimal expansion of Sum_{k>=1} 1/Product of the k consecutive Fibonacci numbers.
k A_xxxxx Expansion
1 A079586 3.3598856662431775531720113029189271796889051337319684864955538153251
2 A290565 1.7738775832851323438023627656769659228307232393594341108392290498649
3 A324007 0.7108553514293284168876944903842708330451180484103086399749735149369
4 0.2049150281252628794885329140859047056992270504855928446613784432368
5 0.0378540002823260756631035758318263246518410219564654534474085675610
6 0.0045033916811269635259578369635768898174496948588364334148979517071
7 0.0003362411268453457928115656517725694972839133469989715601437444837
8 0.0000157197618585596646075219438686990100758465336322798458353726393
9 A322711 0.0000004571522762064818372598445572889518549113726012557938158960751
...
---------------------------------------------------------------------
Total 6.0922434474344421121173873763040413146275243072847552367885514290335

Examples

			6.0922434474344421121173873763040413146275243072847552367885514290335796552...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[ N[ 1/Product[ Fibonacci@j, {j, k, k +n -1}], 110], {k, 525}]; Sum[ f[n], {n, 35}]
Showing 1-3 of 3 results.