cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A324007 Decimal expansion of the sum of reciprocals of the products of 3 consecutive Fibonacci numbers.

Original entry on oeis.org

7, 1, 0, 8, 5, 5, 3, 5, 1, 4, 2, 9, 3, 2, 8, 4, 1, 6, 8, 8, 7, 6, 9, 4, 4, 9, 0, 3, 8, 4, 2, 7, 0, 8, 3, 3, 0, 4, 5, 1, 1, 8, 0, 4, 8, 4, 1, 0, 3, 0, 8, 6, 3, 9, 9, 7, 4, 9, 7, 3, 5, 1, 4, 9, 3, 6, 9, 6, 4, 2, 3, 8, 2, 6, 1, 1, 3, 5, 4, 4, 8, 4, 1, 7, 5, 8, 8, 4, 1, 6, 8, 1, 7, 1, 4, 8, 5, 8, 5, 7, 6, 8, 5, 4, 9
Offset: 0

Views

Author

Robert G. Wilson v, Feb 11 2019

Keywords

Examples

			0.71085535142932841688769449038427083304511804841030863997497351493696423826...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[ N[ 1/Product[ Fibonacci@j, {j, k, k + 2}], 128], {k, 177}], 10, 111][[1]]
  • PARI
    suminf(n=1, 1/(fibonacci(n)*fibonacci(n+1)*fibonacci(n+2))) \\ Michel Marcus, Feb 19 2019

Formula

From Amiram Eldar, Feb 09 2023: (Start)
Equals Sum_{k>=1} 1/A065563(k).
Equals 1 - A158933 (Melham, 2003). (End)

A201615 Decimal expansion of Sum_{n>=1} 1/F(n)^n, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

2, 1, 3, 7, 6, 6, 9, 5, 0, 9, 6, 7, 2, 6, 9, 8, 4, 3, 3, 3, 1, 7, 1, 4, 9, 8, 1, 6, 9, 0, 3, 2, 6, 1, 9, 4, 1, 9, 0, 3, 9, 6, 6, 6, 3, 1, 7, 4, 4, 2, 0, 9, 7, 5, 8, 4, 7, 2, 1, 2, 1, 4, 7, 1, 0, 5, 2, 3, 8, 7, 1, 0, 1, 1, 6, 3, 4, 5, 5, 0, 5, 2, 5, 3, 9, 6, 5, 8, 8, 6, 2, 6, 3, 0, 5, 3, 3, 3, 6, 6, 0, 8, 6, 8, 0
Offset: 1

Views

Author

Michel Lagneau, Dec 03 2011

Keywords

Examples

			2.13766950967269843331714981... = 1/1^1 + 1/1^2+ 1/2^3+ 1/3^4 +1/5^5 +1/8^6 +...
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):Digits:=120:s:=sum( evalf(1/ fibonacci(n)^n),n=1..200):print(s):
  • Mathematica
    digits = 105; NSum[1/Fibonacci[n]^n, {n, 1, Infinity}, NSumTerms -> digits, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 21 2014 *)
  • PARI
    suminf(n=1, 1/fibonacci(n)^n); \\ Michel Marcus, Feb 21 2014

A201616 Decimal expansion of Sum_{n = 1 .. infinity} (-1)^(n+1)/F(n)^n where F=A000045 is the Fibonacci sequence.

Original entry on oeis.org

1, 1, 2, 9, 7, 0, 5, 2, 2, 2, 0, 0, 5, 9, 7, 7, 4, 2, 2, 3, 8, 0, 4, 0, 6, 7, 7, 9, 0, 4, 2, 8, 7, 9, 4, 3, 4, 0, 8, 6, 1, 9, 1, 4, 5, 0, 2, 3, 1, 6, 4, 4, 8, 6, 2, 1, 1, 2, 1, 0, 5, 0, 7, 6, 7, 7, 7, 0, 1, 9, 5, 3, 8, 3, 2, 7, 3, 0, 7, 9, 8, 9, 2, 9, 2, 6, 3, 4, 6, 4, 8, 2, 2, 8, 9, 4, 3, 8, 9, 6, 9, 3, 7, 8, 8
Offset: 0

Views

Author

Michel Lagneau, Dec 03 2011

Keywords

Examples

			0.1129705222005977422380406779... = 1/1^1 - 1/1^2 + 1/2^3 - 1/3^4 + 1/5^5 - ...
		

Crossrefs

Programs

  • Maple
    with(combinat,fibonacci):Digits:=120:s:=sum( evalf(((-1)^(n+1))/ fibonacci(n)^n),n=1..200):print(s):
  • Mathematica
    RealDigits[N[Sum[((-1)^(n+1))/Fibonacci[n]^n,{n,1,105}],105]][[1]]
  • PARI
    -suminf(n=1,(-1)^n/fibonacci(n)^n) \\ Charles R Greathouse IV, Dec 05 2011

A338612 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/L(k) where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

8, 3, 0, 5, 0, 2, 8, 2, 1, 5, 8, 6, 8, 7, 6, 6, 8, 2, 3, 1, 6, 9, 3, 6, 4, 8, 6, 2, 5, 1, 0, 5, 9, 5, 1, 9, 1, 7, 7, 3, 0, 4, 6, 2, 1, 4, 3, 0, 4, 0, 8, 2, 8, 0, 1, 4, 6, 0, 2, 6, 4, 1, 3, 9, 0, 7, 9, 1, 0, 4, 9, 8, 4, 8, 6, 0, 4, 3, 0, 0, 6, 7, 4, 9, 3, 3, 0
Offset: 0

Views

Author

Amiram Eldar, Nov 03 2020

Keywords

Comments

André-Jeannin (1989) proved that this constant is irrational, and Tachiya (2004) proved that it does not belong to the quadratic number field Q(sqrt(5)).

Examples

			0.83050282158687668231693648625105951917730462143040...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(n+1)/LucasL[n], {n, 1, 1000}], 10, 120][[1]]

Formula

Equals A153416 - A153415.
Equals Sum_{k>=1} (-1)^(k+1) * Fibonacci(k)/Fibonacci(2*k).
Equals Sum_{k>=1} (-1)^(k+1)/(phi^k + (1-phi)^k), where phi is the golden ratio (A001622).
Equals Sum_{k>=0} 1/(phi^(2*k+1) + (-1)^k).

A357054 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*k/Fibonacci(2*k).

Original entry on oeis.org

5, 8, 0, 0, 0, 4, 7, 3, 9, 5, 0, 7, 7, 7, 0, 6, 8, 0, 0, 6, 7, 4, 7, 0, 9, 8, 1, 8, 9, 5, 5, 2, 2, 8, 0, 2, 6, 9, 8, 5, 0, 1, 2, 6, 0, 9, 6, 4, 6, 1, 6, 3, 9, 0, 1, 5, 7, 7, 5, 6, 1, 0, 0, 1, 7, 7, 6, 7, 3, 7, 5, 7, 5, 2, 1, 9, 9, 7, 8, 4, 8, 9, 4, 9, 2, 1, 0, 4, 4, 7, 8, 6, 6, 9, 4, 0, 2, 2, 3, 7, 1, 4, 1, 1, 5
Offset: 0

Views

Author

Amiram Eldar, Sep 10 2022

Keywords

Examples

			0.58000473950777068006747098189552280269850126096461...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[(-1)^(k+1)*k/Fibonacci[2*k], {k, 1, 300}], 10, 100][[1]]
  • PARI
    sumalt(k=1, (-1)^(k+1)*k/fibonacci(2*k)) \\ Michel Marcus, Sep 10 2022

Formula

Equals Sum_{k>=1} (-1)^(k+1)*k/A001906(k).
Equals (1/sqrt(5)) * Sum_{k>=1} 1/Fibonacci(2*k-1)^2 (Jennings, 1994).
Showing 1-5 of 5 results.