cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163198 Sum of the cubes of the first n even-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 9801, 540, 28, 1, 0, [0], 1, 28, 540, 9801, 176176, ... This is A163198-reversed followed by A163198. That is, A163198(-n) = A163198(n-1).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
    LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
    Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
  • PARI
    a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
    
  • PARI
    concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} F(2k)^3.
a(n) = A163199(n) + 1.
a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) + 10).
a(n) = (1/4)*(F(2n+1)^3 - 3*F(2n+1) + 2). (K. Subba Rao)
a(n) = (1/4)*F(n)^2*L(n+1)^2*F(n-1)*L(n+2) = A163195(n) if n is even.
a(n) = (1/4)*L(n)^2*F(n+1)^2*L(n-1)*F(n+2) = A163197(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 8.
a(n) - 22 a(n-1) + 77 a(n-2) - 77 a(n-3) + 22 a(n-4) - a(n-5) = 0.
G.f.: (x + 6*x^2 + x^3)/(1 - 22*x + 77*x^2 - 77*x^3 + 22*x^4 - x^5) = x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)).
a(n) = (F(2*n+1)-1)^2*(F(2*n+1) + 2)/4, n>=0. See the Melham reference for a general conjecture. - Wolfdieter Lang, Aug 10 2012

Extensions

Melham and Ozeki references from Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.

A215042 a(n) = F(8*n)/L(2*n) with n >= 0, F = A000045 (Fibonacci numbers) and L = A000032 (Lucas numbers).

Original entry on oeis.org

0, 7, 141, 2576, 46347, 831985, 14930208, 267913919, 4807525989, 86267568688, 1548008749155, 27777890017577, 498454011832896, 8944394323670071, 160500643816049277, 2880067194369984080, 51680708854856144763, 927372692193073296289
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2012

Keywords

Comments

This provides the second example for the Riordan transition matrix R mentioned in a comment to A078812 (here the column called there n=1 is relevant).

Crossrefs

Cf. A001906 (for F(4*n)/L(2*n) = F(2*n)), 24*A215043 (for F(12*n)/L(2*n)).

Programs

  • Magma
    [Fibonacci(8*n)/Lucas(2*n): n in [0..17]]; // Bruno Berselli, Aug 31 2012
  • Mathematica
    Table[Fibonacci[8 n]/LucasL[2 n], {n, 0, 17}] (* Bruno Berselli, Aug 31 2012 *)
    LinearRecurrence[{21,-56,21,-1},{0,7,141,2576},20] (* Harvey P. Dale, Jul 18 2021 *)

Formula

a(n) = 2*F(2*n) + 1*5*F(2*n)^3, n >= 0 (for the coefficients 2, 1, see the second row of the Riordan matrix R = A078812 (with offset [0,0])).
a(n) = F(6*n) - F(2*n), n >= 0, (from the preceding line and a 5*F(2*n)^3 formula given in a comment on the signed triangle A111418, with l->2*n, n->1; see also 5*A215039).
O.g.f.: x*(7-6*x+7*x^2)/((1-3*x+x^2)*(1-18*x+x^2)). The partial fraction decomposition and recurrences lead to the preceding formula.

A215043 a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).

Original entry on oeis.org

0, 2, 276, 34561, 4261992, 524393210, 64499742738, 7933009283134, 975696814205904, 120002796170968643, 14759368609635548580, 1815282342961539780022, 223264968937188026209956, 27459775899111901985784506
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2012

Keywords

Comments

24*a(n) is the third example for the Riordan transition matrix introduced in a comment on A078812 (with offset [0,0]). Take there l -> n, n -> 2. See the second formula below.

Crossrefs

Cf. A215042 (for F(8*n)/L(2*n)).

Programs

  • Magma
    [Fibonacci(12*n)/(24*Lucas(2*n)): n in [0..15]]; // Vincenzo Librandi, Sep 02 2012
    
  • Mathematica
    Table[Fibonacci[12*n]/(24*LucasL[2*n]), {n,0,15}] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    vector(15, n, n--; fibonacci(12*n)/(24*lucas(2*n))) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [fibonacci(12*n)/(24*lucas_number2(2*n,1,-1)) for n in (0..15)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).
a(n) = 3*F(2*n) + 20*F(2*n)^3 + 25*F(2*n)^5, n >= 0 (see the comment above).
O.g.f.: x*(2 - 12*x + 97*x^2 - 12*x^3 + 2*x^4)/((1 - 3*x + x^2)*(1 - 18*x + x^2)*(1 - 123*x + x^2)). From the o.g.f.s for the sequences appearing in the preceding formula, see A001906, A215039 and A215044.
a(n) = (L(8*n) + 1)*F(2*n)/24. - Ehren Metcalfe, Jun 04 2019

A215040 a(n) = F(2*n+1)^3, n>=0, with F = A000045 (Fibonacci).

Original entry on oeis.org

1, 8, 125, 2197, 39304, 704969, 12649337, 226981000, 4073003173, 73087061741, 1311494070536, 23533806109393, 422297015640625, 7577812474746632, 135978327528030989, 2440032083025183109, 43784599166913148552, 785682752921379769625, 14098504953417839657513
Offset: 0

Views

Author

Wolfdieter Lang, Aug 10 2012

Keywords

Comments

Bisection (odd part) of A056570. From this follows the o.g.f., and its partial fraction decomposition leads to the explicit formula given below. For the computation see A215039 for a comment on Chebyshev's S-polynomials.

Crossrefs

Cf. A000045, A056570, A163200 (partial sums).

Programs

  • Mathematica
    Fibonacci[2*Range[0,20]+1]^3 (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = F(2*n+1)^3, n>=0, with F=A000045.
O.g.f.: (1-x)*(1-12*x+x^2)/((1-3*x+x^2)*(1-18*x+x^2)) (from the bisection (odd part) of A056570).
a(n) = (12*F(2*n+1) + F(6*(n+1)) - F(6*n))/20, n>=0.
a(n) = 1 + (4*Sum_{k=1..n} F(6*k) + 3*Sum_{k=1..n} F(2*k)) / 5 (Davenport, 2024). - Amiram Eldar, Aug 29 2024
Showing 1-4 of 4 results.