cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329421 a(n) = gcd(A330050(n), A330051(n)).

Original entry on oeis.org

0, 3, 2, 7, 25, 72, 52, 141, 510, 1353, 979, 2576, 9320, 24447, 17690, 46347, 167685, 439128, 317756, 831985, 3010150, 7880997, 5702743, 14930208, 54018000, 141421803, 102333778, 267913919, 969321665, 2537719272, 1836310916, 4807525989, 17393792430, 45537545553
Offset: 0

Views

Author

Michael Somos, Nov 30 2019

Keywords

Examples

			G.f. = 3*x + 2*x^2 + 7*x^3 + 25*x^4 + 72*x^5 + 52*x^6 + 141*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[{i = 1 + Quotient[n, 2], j = 1 + 2 Mod[n, 2] + 3 Quotient[n, 2]}, If[ Mod[n, 4] > 1, Fibonacci[j] - Fibonacci[i], LucasL[j] - LucasL[i]]];
  • PARI
    {a(n) = my(i=n\2+1, j=n%2+i+n, F=fibonacci, L=x->F(x+1)+F(x-1), h=if(n\2%2, x->F(x), x->L(x))); h(j)-h(i)};

Formula

a(n) = -a(-2-n) for all odd n in Z. a(4*n-1) = A215042(n) for all n in Z.
Conjectures from Colin Barker, Dec 02 2019: (Start)
G.f.: x*(1 + x)*(3 - x + 8*x^2 + 17*x^3 - 8*x^4 + 18*x^5 - 24*x^6 + 9*x^7 - x^9 + 8*x^10 + 2*x^11 + x^12) / ((1 + 4*x^2 - x^4)*(1 + x^2 - x^4)*(1 - x^2 - x^4)*(1 - 4*x^2 - x^4)).
a(n) = 21*a(n-4) - 56*a(n-8) + 21*a(n-12) - a(n-16) for n>15.
(End)

A215043 a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).

Original entry on oeis.org

0, 2, 276, 34561, 4261992, 524393210, 64499742738, 7933009283134, 975696814205904, 120002796170968643, 14759368609635548580, 1815282342961539780022, 223264968937188026209956, 27459775899111901985784506
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2012

Keywords

Comments

24*a(n) is the third example for the Riordan transition matrix introduced in a comment on A078812 (with offset [0,0]). Take there l -> n, n -> 2. See the second formula below.

Crossrefs

Cf. A215042 (for F(8*n)/L(2*n)).

Programs

  • Magma
    [Fibonacci(12*n)/(24*Lucas(2*n)): n in [0..15]]; // Vincenzo Librandi, Sep 02 2012
    
  • Mathematica
    Table[Fibonacci[12*n]/(24*LucasL[2*n]), {n,0,15}] (* G. C. Greubel, Jun 30 2019 *)
  • PARI
    lucas(n) = fibonacci(n+1) + fibonacci(n-1);
    vector(15, n, n--; fibonacci(12*n)/(24*lucas(2*n))) \\ G. C. Greubel, Jun 30 2019
    
  • Sage
    [fibonacci(12*n)/(24*lucas_number2(2*n,1,-1)) for n in (0..15)] # G. C. Greubel, Jun 30 2019

Formula

a(n) = F(12*n)/(24*L(2*n)), n >= 0, with F = A000045 (Fibonacci) and L = A000032 (Lucas).
a(n) = 3*F(2*n) + 20*F(2*n)^3 + 25*F(2*n)^5, n >= 0 (see the comment above).
O.g.f.: x*(2 - 12*x + 97*x^2 - 12*x^3 + 2*x^4)/((1 - 3*x + x^2)*(1 - 18*x + x^2)*(1 - 123*x + x^2)). From the o.g.f.s for the sequences appearing in the preceding formula, see A001906, A215039 and A215044.
a(n) = (L(8*n) + 1)*F(2*n)/24. - Ehren Metcalfe, Jun 04 2019
Showing 1-2 of 2 results.