A001654 Golden rectangle numbers: F(n) * F(n+1), where F(n) = A000045(n) (Fibonacci numbers).
0, 1, 2, 6, 15, 40, 104, 273, 714, 1870, 4895, 12816, 33552, 87841, 229970, 602070, 1576239, 4126648, 10803704, 28284465, 74049690, 193864606, 507544127, 1328767776, 3478759200, 9107509825, 23843770274, 62423800998, 163427632719, 427859097160, 1120149658760
Offset: 0
A010048 Triangle of Fibonomial coefficients, read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 5, 15, 15, 5, 1, 1, 8, 40, 60, 40, 8, 1, 1, 13, 104, 260, 260, 104, 13, 1, 1, 21, 273, 1092, 1820, 1092, 273, 21, 1, 1, 34, 714, 4641, 12376, 12376, 4641, 714, 34, 1, 1, 55, 1870, 19635, 85085, 136136, 85085, 19635, 1870, 55, 1
Offset: 0
Comments
Conjecture: polynomials with (positive) Fibonomial coefficients are reducible iff n odd > 1. - Ralf Stephan, Oct 29 2004
Examples
First few rows of the triangle T(n, k) are: n\k 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 1 1 2: 1 1 1 3: 1 2 2 1 4: 1 3 6 3 1 5: 1 5 15 15 5 1 6: 1 8 40 60 40 8 1 7: 1 13 104 260 260 104 13 1 8: 1 21 273 1092 1820 1092 273 21 1 9: 1 34 714 4641 12376 12376 4641 714 34 1 10: 1 55 1870 19635 85085 136136 85085 19635 1870 55 1 ... - Table extended and reformatted by _Wolfdieter Lang_, Oct 10 2012 For n=7 and k=3, n - k + 1 = 7 - 3 + 1 = 5, so T(7,3) = F(7)*F(6)*F(5)/( F(3)*F(2)*F(1)) = 13*8*5/(2*1*1) = 520/2 = 260. - _Michael B. Porter_, Sep 26 2016
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 84 and 492.
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- A. T. Benjamin and S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972.
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- M. Dziemianczuk, Cobweb Sequences Map, See sequence (4).2. [Dead link]
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
- Sergio Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- Dale Gerdemann, Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle, "Another interesting pattern is for Golden Rectangle Numbers A001654. I made a short video illustrating this pattern, along with other columns of the Fibonomial Triangle A010048".
- Dale K. Hathaway and Stephen L. Brown, Fibonacci Powers and a Fascinating Triangle, The College Mathematics Journal, 28 (No. 2, 1997), 124-128. See Fig. 1.
- Ron Knott, The Fibonomials.
- E. Krot, An introduction to finite Fibonomial calculus, arXiv:math/0503210 [math.CO], 2005.
- E. Krot, Further developments in Fibonomial calculus, arXiv:math/0410550 [math.CO], 2004.
- D. Marques and P. Trojovsky, On Divisibility of Fibonomial Coefficients by 3, J. Int. Seq. 15 (2012) #12.6.4.
- D. Marques and P. Trojovsky, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015) # 15.3.1.
- Romeo Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
- C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.
- T. M. Richardson, The Filbert Matrix, arXiv:math/9905079 [math.RA], 1992.
- Bruce Sagan, Two Binomial Coefficient Analogues, Slides, 2013.
- Jeremiah Southwick, A Conjecture concerning the Fibonomial Triangle, arXiv:1604.04775 [math.NT], 2016.
- Ralf Stephan, A recurrence for the fibonomials.
- Eric Weisstein's World of Mathematics, Fibonacci Coefficient, q-Binomial Coefficient.
Crossrefs
Cf. A055870 (signed version of triangle).
Programs
-
Magma
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >; [Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
Maple
A010048 := proc(n,k) mul(combinat[fibonacci](i),i=n-k+1..n)/mul(combinat[fibonacci](i),i=1..k) ; end proc: seq(seq(A010048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 05 2015
-
Mathematica
f[n_, k_] := Product[ Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Table[ f[n, i], {n, 0, 10}, {i, 0, n}] (* Robert G. Wilson v, Dec 04 2009 *) Column[Round@Table[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {n, 0, 10}, {k, 0, n}], Center] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *) T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Sinh[c j], {j, k + 1, n}] / Product[I^j Sinh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Jul 08 2025 *)
-
Maxima
ffib(n):=prod(fib(k),k,1,n); fibonomial(n,k):=ffib(n)/(ffib(k)*ffib(n-k)); create_list(fibonomial(n,k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 02 2012 */
-
PARI
T(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
-
SageMath
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1)) flatten([[fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
Formula
T(n, k) = ((n, k)) = (F(n)*F(n-1)*...*F(n-k+1))/(F(k)*F(k-1)*...*F(1)), F(i) = Fibonacci numbers A000045.
T(n, k) = Fibonacci(n-k-1)*T(n-1, k-1) + Fibonacci(k+1)*T(n-1, k).
T(n, k) = phi^(k*(n-k)) * C(n, k)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 26 2016
G.f. of column k: x^k * exp( Sum_{j>=1} Fibonacci((k+1)*j)/Fibonacci(j) * x^j/j ). - Seiichi Manyama, May 07 2025
T(n, k) = Product_{j=k+1..n} i^j*sinh(c*j) / Product_{j=1..n-k} i^j*sinh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If you substitute sinh by cosh you get the Lucas triangle A385732/A385733, which is a rational triangle. - Peter Luschny, Jul 08 2025
A015441 Generalized Fibonacci numbers.
0, 1, 1, 7, 13, 55, 133, 463, 1261, 4039, 11605, 35839, 105469, 320503, 953317, 2876335, 8596237, 25854247, 77431669, 232557151, 697147165, 2092490071, 6275373061, 18830313487, 56482551853, 169464432775, 508359743893, 1525146340543, 4575304803901, 13726182847159
Offset: 0
Comments
a(n) is the coefficient of x^(n-1) in the bivariate Fibonacci polynomials F(n)(x,y) = xF(n-1)(x,y) + yF(n-2)(x,y), F(0)(x,y)=0, F(1)(x,y)=1, when y=6x^2. - Mario Catalani (mario.catalani(AT)unito.it), Dec 06 2002
For n>=1: number of length-(n-1) words with letters {0,1,2,3,4,5,6,7} where no two consecutive letters are nonzero, see fxtbook link below. - Joerg Arndt, Apr 08 2011
Starting with offset 1 and convolved with (1, 3, 3, 3, ...) = A003462: (1, 4, 13, 40, ...). - Gary W. Adamson, May 28 2009
a(n) is identical to its inverse binomial transform signed. Differences: A102901. - Paul Curtz, Feb 23 2010
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 7*a(n-2) equals the number of 7-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 1, 1, 2, 20, 1, 6, 2, 3, 20, 5, 2, 12, 6, 20, 4, 16, 3, 18, 20, ... - R. J. Mathar, Aug 10 2012
A015441 and A015518 are the only integer sequences (from the family of homogeneous linear recurrence relation of order 2 with positive integer coefficients with initial values a(0)=0 and a(1)=1) whose ratio a(n+1)/a(n) converges to 3 as n approaches infinity. - Felix P. Muga II, Mar 14 2014
This is an autosequence of the first kind: the array of successive differences shows a main diagonal of zeros and the inverse binomial transform is identical to the sequence (with alternating signs). - Pointed out by Paul Curtz, Dec 05 2016
First two upper diagonals: A000400(n).
This is a variation on the Starhex honeycomb configuration A332243, see illustration in links. It is an alternating pattern of the 2nd iteration of the centered hexagonal numbers A003215 and centered 12-gonal 'Star' numbers A003154. - John Elias, Oct 06 2021
Examples
G.f. = x + x^2 + 7*x^3 + 13*x^4 + 55*x^5 + 133*x^6 + 463*x^7 + 1261*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), p. 317-318
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- John Elias, Illustration: A Starhex honeycomb variation
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 48.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- A. G. Shannon and J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, Vol. 21, No. 2, (2015), 35-42.
- Index entries for linear recurrences with constant coefficients, signature (1,6).
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
Maple
A015441:=n->(1/5)*((3^n)-((-2)^n)); seq(A015441(n), n=0..30); # Wesley Ivan Hurt, Mar 14 2014
-
Mathematica
a[n_]:=(MatrixPower[{{1,4},{1,-2}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]], {n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{1,6},{0,1},30] (* Harvey P. Dale, Apr 26 2011 *) CoefficientList[Series[x/((1 + 2 x) (1 - 3 x)), {x, 0, 29}], x] (* Michael De Vlieger, Dec 05 2016 *)
-
PARI
{a(n) = (3^n - (-2)^n) / 5};
-
Sage
[lucas_number1(n,1,-6) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009
Formula
G.f.: x/((1+2*x)*(1-3*x)).
a(n) = a(n-1) + 6*a(n-2).
a(n) = (1/5)*((3^n)-((-2)^n)). - henryk.wicke(AT)stud.uni-hannover.de
E.g.f.: (exp(3*x) - exp(-2*x))/5. - Paul Barry, Apr 20 2003
a(n+1) = Sum_{k=0..ceiling(n/2)} 6^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004
The binomial transform of [1,1,7,13,55,133,463,...] is A122117. - Philippe Deléham, Oct 19 2006
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-6)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = 3a(n-1) + (-1)^(n+1)*A000079(n-1). - Paul Curtz, Feb 23 2010
G.f.: Q(0) -1, where Q(k) = 1 + 6*x^2 + (k+2)*x - x*(k+1 + 6*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
a(n) = (Sum_{1<=k<=n, k odd} binomial(n,k)*5^(k-1))/2^(n-1). - Vladimir Shevelev, Feb 05 2014
a(-n) = -(-1)^n * a(n) / 6^n for all n in Z. - Michael Somos, Mar 18 2014
From Peter Bala, Apr 01 2015: (Start)
Sum_{n >= 0} a(n+1)*x^n = exp( Sum_{n >= 1} A087451(n)*x^n/n ).
For k = 0, 1, 2, ... and for n >= 1, (5^k)*a(n) | a((5^k)*n).
The expansion of exp( Sum_{n >= 1} a(5*n)/(5*a(n))*x^n/n ) has integral coefficients. Cf. A001656. (End)
From Peter Bala, Jun 27 2025: (Start)
Sum_{n >= 1} (-6)^n/(a(n)*a(n+1)) = -2, since (-6)^n/(a(n)*a(n+1)) = (-2)^n/a(n) - (-2)^(n+1)/a(n+1) for n >= 1.
The following are examples of telescoping infinite products:
Product_{n >= 0} (1 + 6^n/a(2*n+2)) = 6, since (1 + 6^(2*n-1)/a(4*n))*(1 + 6^(2*n)/a(4*n+2)) = (6 - 4^(n+1)/b(n)) / (6 - 4^n/b(n-1)), where b(n) = (2*4^n + 3*9^n)/5 = A096951(n). Similarly,
Product_{n >= 1} (1 - 6^n/a(2*n+2)) = 3/13.
Product_{n >= 0} (1 + (-6)^n/a(2*n+2)) = 6/5.
Product_{n >= 1} (1 - (-6)^n/a(2*n+2)) = 15/13.
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n. (End)
A055870 Signed Fibonomial triangle.
1, 1, -1, 1, -1, -1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -5, -15, 15, 5, -1, 1, -8, -40, 60, 40, -8, -1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -34, -714, 4641, 12376, -12376, -4641, 714, 34, -1, 1, -55, -1870, 19635, 85085, -136136, -85085, 19635, 1870, -55, -1
Offset: 0
Comments
Row n+1 (n >= 1) of the signed triangle lists the coefficients of the recursion relation for the n-th power of Fibonacci numbers A000045: Sum_{m=0..n+1} T(n+1,m)*(Fibonacci(k-m))^n = 0, k >= n+1; inputs: (Fibonacci(k))^n, k=0..n.
The inverse of the row polynomial p(n,x) := Sum_{m=0..n} T(n,m)*x^m is the g.f. for the column m=n-1 of the Fibonomial triangle A010048.
The row polynomials p(n,x) factorize according to p(n,x) = G(n-1)*p(n-2,-x), with inputs p(0,x)= 1, p(1,x)= 1-x and G(n):= 1 - A000032(n)*x + (-1)^n*x^2. (Derived from Riordan's result and Knuth's exercise).
The row polynomials are the characteristic polynomials of product of the binomial matrix binomial(i,j) and the exchange matrix J_n (matrix with 1's on the antidiagonal, 0 elsewhere). - Paul Barry, Oct 05 2004
Examples
Row polynomial for n=4: p(4,x) = 1-3*x-6*x^2+3*x^3+x^4 = (1+x-x^2)*(1-4*x-x^2). 1/p(4,x) is G.f. for A010048(n+3,3), n >= 0: {1,3,15,60,...} = A001655(n). For n=3: 1*(Fibonacci(k))^3 - 3*(Fibonacci(k-1))^3 - 6*(Fibonacci(k-2))^3 + 3*(Fibonacci(k-3))^3 + 1*(Fibonacci(k-4))^3 = 0, k >= 4; inputs: (Fibonacci(k))^3, k=0..3. The triangle begins: n\m 0 1 2 3 4 5 6 7 8 9 0 1 1 1 -1 2 1 -1 -1 3 1 -2 -2 1 4 1 -3 -6 3 1 5 1 -5 -15 15 5 -1 6 1 -8 -40 60 40 -8 -1 7 1 -13 -104 260 260 -104 -13 1 8 1 -21 -273 1092 1820 -1092 -273 21 1 9 1 -34 -714 4641 12376 -12376 -4641 714 34 -1 ... [_Wolfdieter Lang_, Aug 06 2012; a(7,1) corrected, Oct 10 2012]
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, pp. 84-5 and 492.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
- A. T. Benjamin, S. S. Plott, A combinatorial approach to fibonomial coefficients, Fib. Quart. 46/47 (1) (2008/9) 7-9.
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- H. W. Gould, Extensions of the Hermite g.c.d. theorems for binomial coefficients, Fib Quart. 33 (1995) 386.
- E. Kilic, The generalized Fibonomial matrix, Eur. J. Combinat. 31 (1) (2010) 193-209.
- Ron Knott, The Fibonomials
- Ewa Krot, An introduction to finite fibonomial calculus, Centr. Eur. J. Math. 2 (5) (2004) 754.
- A. K. Kwasniewski, Fibonomial cumulative connection constants, arXiv:math/0406006 [math.CO], 2004-2009.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- J. Seibert and P. Trojovsky, On some identities for the Fibonomial coefficients, Math. Slov. 55 (2005) 9-19.
- P. Trojovsky, On some identities for the Fibonomial coefficients..., Discr. Appl. Math. 155 (15) (2007) 2017.
Crossrefs
Programs
-
Magma
Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >; [(-1)^Floor((k+1)/2)*Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
-
Maple
A055870 := proc(n,k) (-1)^floor((k+1)/2)*A010048(n,k) ; end proc: # R. J. Mathar, Jun 14 2015
-
Mathematica
T[n_, m_]:= {1,-1,-1,1}[[Mod[m,4] + 1]] * Product[ Fibonacci[n-j+1]/Fibonacci[j], {j, m}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Jean-François Alcover, Jul 05 2013 *)
-
SageMath
def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1)) flatten([[(-1)^((k+1)//2)*fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024
Formula
G.f. for column m: (-1)^floor((m+1)/2)*x^m/p(m+1, x) with the row polynomial of the (signed) triangle: p(n, x) := Sum_{m=0..n} T(n, m)*x^m.
Sum_{k=0..n} T(n,k) * x^k = exp( -Sum_{k>=1} Fibonacci(n*k)/Fibonacci(k) * x^k/k ). - Seiichi Manyama, May 07 2025
A084175 Jacobsthal oblong numbers.
0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0
Comments
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 11.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 6.
- Index entries for linear recurrences with constant coefficients, signature (3,6,-8).
Crossrefs
Programs
-
GAP
List([0..30], n-> (2^(2*n+1) -(-2)^n -1)/9); # G. C. Greubel, Sep 21 2019
-
Magma
[(2*4^n-(-2)^n-1)/9: n in [0..30]]; // Vincenzo Librandi, Jun 04 2011
-
Maple
for n from 1 to 25 do print(round(2^n/3)*round(2^(n+1)/3)) od; # Gary Detlefs, Feb 10 2010
-
Mathematica
Table[(2*4^n -(-2)^n -1)/9, {n,0,30}] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011, modified by G. C. Greubel, Sep 21 2019 *) LinearRecurrence[{3,6,-8}, {0,1,3}, 25] (* Jean-François Alcover, Sep 21 2017 *)
-
PARI
a(n)=(2*4^n-(-2)^n-1)/9 \\ Charles R Greathouse IV, Sep 24 2015
-
Python
def A084175(n): return ((m:=1<
Chai Wah Wu, Apr 25 2025 -
Sage
[gaussian_binomial(n, 2, -2) for n in range(1, 26)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = (2*4^n - (-2)^n - 1)/9;
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), a(0)=0, a(1)=1, a(2)=3.
G.f.: x/((1+2*x)*(1-x)*(1-4*x)).
E.g.f.: (2*exp(4*x) - exp(x) - exp(-2*x))/9.
a(n+1) - 4*a(n) = 1, -1, 3, -5, 11, ... = A001045(n+1) signed. - Paul Curtz, May 19 2008
a(n) = round(2^n/3) * round(2^(n+1)/3). - Gary Detlefs, Feb 10 2010
From Peter Bala, Mar 30 2015: (Start)
The shifted o.g.f. A(x) := 1/( (1 + 2*x)*(1 - x)*(1 - 4*x) ) = 1/(1 - 3*x - 6*x^2 + 8*x^3). Hence A(x) == 1/(1 - 3*x + 3*x^2 - x^3) (mod 9) == 1/(1 - x)^3 (mod 9). It follows by Theorem 1 of Heninger et al. that (A(x))^(1/3) = 1 + x + 4*x^2 + 10*x^3 + ... has integral coefficients.
A001658 Fibonomial coefficients.
1, 13, 273, 4641, 85085, 1514513, 27261234, 488605194, 8771626578, 157373300370, 2824135408458, 50675778059634, 909348684070099, 16317540120588343, 292806787575013635, 5254201798026392211, 94282845030238533383, 1691836875411111866723, 30358781826262552258596
Offset: 0
Comments
It appears that a(n) = 13*a(n-1) + 104*a(n-2) - 260*a(n-3) - 260*a(n-4) + 104*a(n-5) + 13*a(n-6) - a(n-7) for n > 6. - John W. Layman, Apr 14 2000
Layman's formula is correct. - Wolfdieter Lang, Jul 13 2000
Layman's formula is a consequence of formula 2.8 (p. 116) of Lind (1971). - Dale Gerdemann, May 08 2016
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- D. A. Lind, A Determinant Involving Binomial Coefficients, Part 1, Part 2, Fibonacci Quarterly 9.2, 1971.
- Index entries for linear recurrences with constant coefficients, signature (13, 104, -260, -260, 104, 13, -1).
Programs
-
Mathematica
f[n_] := Times @@ Fibonacci[Range[n+1, n+6]]/240; Table[f[n], {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *) LinearRecurrence[{13,104,-260,-260,104,13,-1},{1,13,273,4641,85085,1514513,27261234},20] (* Harvey P. Dale, Aug 24 2014 *)
-
PARI
b(n,k)=prod(j=1,k,fibonacci(n+j)/fibonacci(j)); vector(20,n,b(n-1,6)) \\ Joerg Arndt, May 08 2016
Formula
From Wolfdieter Lang, Jul 13 2000: (Start)
G.f.: 1/(1-13*x-104*x^2+260*x^3+260*x^4-104*x^5-13*x^6+x^7) = 1/((1+x)*(1-3*x+x^2)*(1+7*x+x^2)*(1-18*x+x^2)) (see Comments to A055870).
a(n) = 5*a(n-1)+F(n-5)*Fibonomial(n+5, 5), n >= 1, a(0) = 1; F(n) = A000045(n) (Fibonacci). a(n) = 18*a(n-1)-a(n-2)+((-1)^n)*Fibonomial(n+4, 4), n >= 2; a(0) = 1, a(1) = 13; Fibonomial(n+4, 4) = A001656(n). (End)
From Gary Detlefs, Dec 03 2012: (Start)
a(n) = F(n+1)*F(n+2)*F(n+3)*F(n+4)*F(n+5)*F(n+6)/240.
a(n) = (F(n+5)^2 - F(n+4)^2)*(F(n+3)^4 - 1)/240, where F(n) = A000045(n). (End)
Conjecture: a(n) = F(7)^(n-6) + Sum_{i=3..n-5} F(i-2)F(6)^{i-1}F(7)^{n-i-5} + Sum_{j=3..i} F(i-2)F(j-2)F(5)^{j-1}F(6)^{i-j}F(7)^{n-i-5} + Sum_{k=3..j} F(i-2)F(j-2)F(k-2)F(4)^{k-1}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5} + Sum_{l=3..k} F(i-2)F(j-2)F(k-2)F(l-2)F(3)^{l-1}F(4)^{k-l}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5} + Sum_{m=3..l} F(i-2)F(j-2)F(k-2)F(l-2)F(m-2)F(m)F(3)^{l-m}F(4)^{k-l}F(5)^{j-k}F(6)^{i-j}F(7)^{n-i-5}, where F(n)=A000045(n). - Dale Gerdemann, May 08 2016
G.f.: exp( Sum_{k>=1} F(7*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025
Extensions
More terms from Wolfdieter Lang, Jul 13 2000
A099930 a(n) = Pell(n) * Pell(n-1) * Pell(n-2) / 10.
1, 12, 174, 2436, 34307, 482664, 6791772, 95567064, 1344731653, 18921807828, 266250046986, 3746422451772, 52716164405255, 741772724044560, 10437534301224120, 146867252940711408, 2066579075472320521, 29078974309550454492, 409172219409185308518, 5757490046038128779316
Offset: 3
Links
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 13.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 10.
- Index entries for linear recurrences with constant coefficients, signature (12,30,-12,-1).
Programs
-
Mathematica
Drop[CoefficientList[Series[x^3/((1+2x-x^2)(1-14x-x^2)),{x,0,20}],x],3] (* or *) LinearRecurrence[{12,30,-12,-1},{1,12,174,2436},20] (* Harvey P. Dale, Feb 26 2012 *)
Formula
G.f.: x^3 / ((1+2*x-x^2)*(1-14*x-x^2)).
a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4); a(3)=1, a(4)=12, a(5)=174, a(6)=2436. - Harvey P. Dale, Feb 26 2012
From Peter Bala, Mar 30 2015: (Start)
The following remarks assume an offset of 0.
The o.g.f. A(x) = 1/( (1 + 2*x - x^2)*(1 - 14*x - x^2) ). Hence A(x) (mod 4) = 1/(1 + 2*x - x^2)^2 (mod 4). It follows by Theorem 1 of Heninger et al. that sqrt(A(x)) = 1 + 6*x + 69*x^2 + 804*x^3 + ... has integral coefficients.
a(n+1) = (1/2)*Sum_{k=1..n-1} ( A014445(k)*A110272(n-k) ) for n > 1. - Michael A. Allen, Jan 25 2023
A088545 Quotient Fibonacci(5*n)/(5*Fibonacci(n)), where Fibonacci(n) = A000045(n).
1, 11, 61, 451, 3001, 20801, 141961, 974611, 6675901, 45768251, 313671601, 2150012161, 14736206161, 101003973851, 692290189501, 4745031073651, 32522917584361, 222915417520961, 1527884938291801, 10472279325329251, 71778069881360701, 491974211042344811, 3372041404278257761
Offset: 1
Comments
The sequences {Fibonacci(k*n)/(Fibonacci(k)*Fibonacci(n)): n >= 1} are integral in the three cases k = 1 (A000012), k = 2 (A000032) and k = 5 (the present sequence). See Young, Section 4. - Peter Bala, Jan 09 2023
Links
- Chatchawan Panraksa and Aram Tangboonduangjit, On Some Arithmetic Properties of a Sequence Related to the Quotient of Fibonacci Numbers, Fibonacci Quart. 55 (2017), no. 1, 21-28.
- Paul Thomas Young, p-adic congruences for generalized Fibonacci sequences, The Fibonacci Quarterly, Vol. 32, No. 1, 1994.
Programs
-
PARI
a(n)=fibonacci(5*n)/(5*fibonacci(n)); \\ Joerg Arndt, Jul 16 2013
Formula
a(n) = A103326(n) / 5.
G.f.: -x*(x^4-4*x^3-9*x^2+6*x+1) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Jul 16 2013
The expansion of exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 6*x^2 + 26*x^3 + 151*x^4 + 851*x^5 + 5101*x^6 + ... has integral coefficients and is equal to G(x)^(1/5), where G(x) is the o.g.f. of A001656. See Young, Theorem 3. - Peter Bala, Jan 09 2023
A103326 a(n) = Fibonacci(5n)/Fibonacci(n).
5, 55, 305, 2255, 15005, 104005, 709805, 4873055, 33379505, 228841255, 1568358005, 10750060805, 73681030805, 505019869255, 3461450947505, 23725155368255, 162614587921805, 1114577087604805, 7639424691459005, 52361396626646255, 358890349406803505
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1).
Programs
-
Magma
[Fibonacci(5*n)/Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Apr 20 2011
-
Maple
p:= (1+5^(1/2))/2: q:=(1-5^(1/2))/2: seq(simplify(q^(4*n)+(p-2)^n+(q-2)^n+(3*p+2)^n+(-1)^(2*n)/4+3/4),n=1..19);
-
PARI
Vec(-5*x*(x^4-4*x^3-9*x^2+6*x+1)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)) + O(x^30)) \\ Colin Barker, Jun 03 2016
Formula
a(n) = L(4n) + (-1)^n*L(2n) + 1, where L(n) = A000032, the Lucas numbers.
a(n) = 1 + L(n)*L(3n). - Neven Juric, Jan 05 2009
a(n) = 25*(Fibonacci(n)^4 + (-1)^n*Fibonacci(n)^2) + 5. - Gary Detlefs, Dec 22 2012
G.f.: -5*x*(x^4 - 4*x^3 - 9*x^2 + 6*x + 1) /((x - 1)*(x^2 - 7*x + 1)*(x^2 + 3*x + 1)). - Colin Barker, Jul 16 2013
a(n) = 5*A088545(n). - Joerg Arndt, Jul 16 2013
exp(Sum_{n >= 1} a(n)*x^n/n) = Sum_{n >= 0} A001656(n)*x^n. - Peter Bala, Mar 30 2015
a(n) = 1 + (1/2*(7 - 3*sqrt(5)))^n + (1/2*(-3 - sqrt(5)))^n + (1/2*(-3 + sqrt(5)))^n + (1/2*(7 + 3*sqrt(5)))^n. - Colin Barker, Jun 03 2016
Extensions
More terms from Colin Barker, Jul 16 2013
A177727 a(0)=1; a(n) = a(n-1) * Fibonacci(3+n) * Fibonacci(1+n) / (Fibonacci(n))^2, n > 1.
1, 3, 30, 180, 1300, 8736, 60333, 412335, 2829310, 19384200, 132882696, 910735488, 6242420665, 42785803515, 293259265950, 2010026277756, 13776931957468, 94428478367520, 647222466507045, 4436128656563175, 30405678471399166, 208403619747957648, 1428419662108160400
Offset: 0
Comments
References
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, p. 93.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1)
Programs
-
Magma
I:=[1, 3, 30, 180, 1300]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
Maple
with (combinat): A177727 := proc(n) if n = 0 then 1; else procname(n-1)*fibonacci(3+n)*fibonacci(1+n)/fibonacci(n)^2 ; end if; end proc: seq(A177727(n),n=0..10) ; # R. J. Mathar, Nov 17 2011
-
Mathematica
a0 = 4; b0 = 2; c0 = 1; a[0] = 1; a[n_] := a[n] = (Fibonacci[(a0 + n - 1)]*Fibonacci[( b0 + n - 1)]/(Fibonacci[n]*Fibonacci[(c0 + n - 1)]))*a[n - 1]; Table[a[n], {n, 0, 30}] LinearRecurrence[{5,15,-15,-5,1},{1,3,30,180,1300},30] (* Vincenzo Librandi, Nov 18 2011 *)
Formula
G.f.: ( -1+2*x ) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Nov 17 2011
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Magma
Maple
Mathematica
PARI
PARI
Python
Python
Formula
Extensions