cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084175 Jacobsthal oblong numbers.

Original entry on oeis.org

0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575, 244335800775, 977343902151, 3909374210503, 15637499638215, 62549992960455
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Inverse binomial transform is A001019 doubled up.
Binomial transform is A084177.
Partial sums of A003683.

Crossrefs

Except for initial terms, same as A015249 and A084152.

Programs

Formula

a(n) = A001045(n)*A001045(n+1).
a(n) = (2*4^n - (-2)^n - 1)/9;
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3), a(0)=0, a(1)=1, a(2)=3.
G.f.: x/((1+2*x)*(1-x)*(1-4*x)).
E.g.f.: (2*exp(4*x) - exp(x) - exp(-2*x))/9.
a(n+1) - 4*a(n) = 1, -1, 3, -5, 11, ... = A001045(n+1) signed. - Paul Curtz, May 19 2008
a(n) = round(2^n/3) * round(2^(n+1)/3). - Gary Detlefs, Feb 10 2010
From Peter Bala, Mar 30 2015: (Start)
The shifted o.g.f. A(x) := 1/( (1 + 2*x)*(1 - x)*(1 - 4*x) ) = 1/(1 - 3*x - 6*x^2 + 8*x^3). Hence A(x) == 1/(1 - 3*x + 3*x^2 - x^3) (mod 9) == 1/(1 - x)^3 (mod 9). It follows by Theorem 1 of Heninger et al. that (A(x))^(1/3) = 1 + x + 4*x^2 + 10*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n+1)*x^n = exp( Sum_{n >= 1} J(3*n)/J(n)*x^n/n ), where J(n) = A001045(n) are the Jacobsthal numbers. Cf. A001656, A099930. (End)

A099927 Pellonomial triangle P(k,n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 30, 12, 1, 1, 29, 174, 174, 29, 1, 1, 70, 1015, 2436, 1015, 70, 1, 1, 169, 5915, 34307, 34307, 5915, 169, 1, 1, 408, 34476, 482664, 1166438, 482664, 34476, 408, 1, 1, 985, 200940, 6791772, 39618670, 39618670, 6791772, 200940, 985, 1
Offset: 0

Views

Author

Ralf Stephan, Nov 03 2004

Keywords

Comments

Also (signed) coefficients of solutions to 0 = Sum[i=0..k+1, x(i)*Pell(m+i)^k ].
Sagan and Savage give two combinatorial interpretations for entry T(n,k) in terms of statistics on integer partitions fitting inside a k x (n-k) rectangle. They also relate the values T(n,k) to q-binomial coefficients evaluated at q = -(3 + 2*sqrt(2)). - Peter Bala, Mar 15 2013

Examples

			Triangle starts:
  1;
  1,   1;
  1,   2,    1;
  1,   5,    5,     1;
  1,  12,   30,    12,     1;
  1,  29,  174,   174,    29,    1;
  1,  70, 1015,  2436,  1015,   70,   1;
  1, 169, 5915, 34307, 34307, 5915, 169, 1;
  ...
		

Crossrefs

Columns include A000129, A084158, A099930, A099931, A383719.
Row sums are in A099928. Central column is in A099929.

Programs

  • Maple
    p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:
    T:= (n, k)-> f(n)/(f(k)*f(n-k)):
    seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 15 2013
  • Mathematica
    p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; f[n_] := f[n] = If[n == 0, 1, p[n] * f[n-1]]; T[n_, k_] := f[n]/(f[k]*f[n-k]); Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

P(k, n) = Prod[i=k-n+1..k, Pell(i)] / Prod[i=1..n, Pell(i)], with Pell(n) = A000129(n).
From Peter Bala, Mar 15 2013: (Start)
In terms of the Pell numbers, Pell(n) = A000129(n), the triangle entry T(n,k) = [n]!/([k]!*[n-k]!), where [n]! := Pell(1)*...*Pell(n) for n >= 1, with the convention [0]! = 1.
Define E(x) = 1 + sum {n>=0} x^n/[n]!. Then a generating function for this triangle is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 2*x + x^2)*z^2/[2]! + (1 + 5*x + 5*x^2 + x^3)*z^3/[3]! + ... (End)
G.f. of column k: x^k * exp( Sum_{j>=1} Pell((k+1)*j)/Pell(j) * x^j/j ). - Seiichi Manyama, May 07 2025

A001656 Fibonomial coefficients.

Original entry on oeis.org

1, 5, 40, 260, 1820, 12376, 85085, 582505, 3994320, 27372840, 187628376, 1285992240, 8814405145, 60414613805, 414088493560, 2838203264876, 19453338487220, 133335155341960, 913892777190965, 6263914210945105
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 5*x + 40*x^2 + 260*x^3 + 1820*x^4 + 12376*x^5 + 85085*x^6 + ... .
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with (combinat): a:=n->1/6*fibonacci(n)*fibonacci(n+1)*fibonacci(n+2)*fibonacci(n+3): seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007
    A001656:=-1/(z-1)/(z**2-7*z+1)/(z**2+3*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(Fibonacci[n+3]*Fibonacci[n+2]*Fibonacci[n+1]*Fibonacci[n])/6,{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
    LinearRecurrence[{5,15,-15,-5,1},{1,5,40,260,1820},20] (* Vincenzo Librandi, Aug 02 2012 *)
    Times@@@Partition[Fibonacci[Range[30]],4,1]/6 (* Harvey P. Dale, Oct 13 2016 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 4))  \\ Joerg Arndt, May 08 2016

Formula

a(n) = ((4+n, 4)) (see A010048), or fibonomial(4+n, 4).
G.f.: 1/(1-5*x-15*x^2+15*x^3+5*x^4-x^5) = 1/((1-x)*(1+3*x+x^2)*(1-7*x+x^2)) (see Comments to A055870). a(n)= 7*a(n-1)-a(n-2)+((-1)^n)*fibonomial(n+2, 2), n >= 2; a(0)=1, a(1)=5; fibonomial(n+2, 2)= A001654(n+1).
a(n) = Product_{k=1..n} Fibonacci(k+4)/Fibonacci(k). - Gary Detlefs, Feb 06 2011
a(n) = (F(n+3)^2-F(n+2)^2)*F(n+3)*F(n+2)/6, where F(n) is the n-th Fibonacci number. - Gary Detlefs, Oct 12 2011
a(n) = a(-5-n) for all n in Z. - Michael Somos, Sep 19 2014
0 = a(n)*(+a(n+1) - 2*a(n+2)) + a(n+1)*(-5*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 19 2014
From Peter Bala, Mar 30 2015: (Start)
The o.g.f. A(x) = 1/(1 - 5*x - 15*x^2 + 15*x^3 + 5*x^4 - x^5). Hence A(x) (mod 25) = 1/(1 - 5*x + 10*x^2 - 10^x^3 + 5*x^4 - x^5) (mod 25) = 1/(1 - x)^5 (mod 25). It follows by Theorem 1 of Heninger et al. that A(x)^(1/5) = 1 + x + 6*x^2 + 26*x^3 + ... has integral coefficients.
Sum_{n >= 0} a(n)*x^n = exp( Sum_{n >= 1} Fibonacci(5*n)/Fibonacci(n)*x^n/n ). Cf. A084175, A099930. (End)
Sum_{n>=0} 1/a(n) = 51/2 - 15*phi, where phi is the golden ratio (A001622) (Koshy, 2022, section 3.3, p. 9). - Amiram Eldar, Jan 23 2025

Extensions

Corrected and extended by Wolfdieter Lang, Jun 27 2000
More terms from Vladimir Joseph Stephan Orlovsky, Nov 23 2009

A383740 a(0) = 4; a(n) = Pell(4*n)/Pell(n) for n > 0.

Original entry on oeis.org

4, 12, 204, 2772, 39236, 551532, 7761996, 109216308, 1536797956, 21624369228, 304278011724, 4281516425748, 60245508232004, 847718631046572, 11928306344398284, 167844007448966772, 2361744410638758916, 33232265756370284172, 467613464999874177996, 6579820775754484587348
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Crossrefs

Row n=4 of A383742.

Programs

  • Mathematica
    a[n_] := Fibonacci[4*n, 2]/Fibonacci[n, 2]; a[0] = 4; Array[a, 20, 0] (* Amiram Eldar, May 08 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(4*(1-9*x-15*x^2+3*x^3)/((1+2*x-x^2)*(1-14*x-x^2)))

Formula

a(n) = 12*a(n-1) + 30*a(n-2) - 12*a(n-3) - a(n-4).
G.f.: 4 * (1-9*x-15*x^2+3*x^3)/((1+2*x-x^2) * (1-14*x-x^2)).
Showing 1-4 of 4 results.