A055887 Number of ordered partitions of partitions.
1, 1, 3, 8, 22, 59, 160, 431, 1164, 3140, 8474, 22864, 61697, 166476, 449210, 1212113, 3270684, 8825376, 23813776, 64257396, 173387612, 467856828, 1262431711, 3406456212, 9191739970, 24802339472, 66924874539, 180585336876, 487278670744, 1314838220172
Offset: 0
Keywords
Examples
The a(4) = 22 chains of multisets, where notation x-y means "y is a submultiset of x", are: (o-o-o-o) (oo-o-o) (oo-oo) (ooo-o) (oooo) (oe-o-o) (ooe-o) (oooe) (oe-oe) (ooe-e) (oee-o) (ooee) (oei-o) (ooei) (oe-e-e) (oee-e) (oeee) (oei-e) (oeei) (oei-i) (oeii) (oeis). From _Gus Wiseman_, Jul 31 2022: (Start) a(n) is the number of ways to choose an integer partition of each part of an integer composition of n. The a(0) = 1 through a(3) = 8 choices are: () ((1)) ((2)) ((3)) ((11)) ((21)) ((1)(1)) ((111)) ((1)(2)) ((2)(1)) ((1)(11)) ((11)(1)) ((1)(1)(1)) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2320
- N. J. A. Sloane, Transforms
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89, DOI:10.1007/s11083-004-9460-9.
- Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
Crossrefs
Programs
-
Maple
with(combstruct); SeqSetSetU := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; P := (x) -> product( 1/(1-x^k), k=1..20 ) - 1; F := (x) -> series( 1/(1-P(x)) - 1, x, 21 ); # F(x) is g.f. for this sequence # Warren D. Smith, Jan 28 2002 A055887rec:= proc(n::integer) local k; option remember; with(combinat): if n = 0 then 1 else add(numbpart(k) *procname(n - k), k=1..n); end if; end proc: seq (A055887rec(n), n=0..10); # Thomas Wieder, Nov 26 2007
-
Mathematica
a = 1/Product[(1 - x^k), {k, 1, \[Infinity]}] - 1; CoefficientList[Series[1/(1 - a), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 23 2010 *) (1/(2 - 1/QPochhammer[x]) + O[x]^30)[[3]] (* Vladimir Reshetnikov, Sep 22 2016 *) Table[Sum[Times@@PartitionsP/@c,{c,Join@@Permutations/@IntegerPartitions[n]}],{n,0,10}] (* Gus Wiseman, Jul 31 2022 *)
-
PARI
Vec(1/(2-1/eta(x+O(x^66)))) \\ Joerg Arndt, Sep 30 2012
Formula
Invert transform of partitions numbers A000041.
Let p(k) be the number of integer partitions of k. Furthermore, set a(0)=1. Then a(n) = Sum_{k=1..n} p(k)*a(n-k). - Thomas Wieder, Nov 26 2007
G.f.: 1/( 1 - Sum_{k>=1} p(k)*x^k ) where p(k) = A000041(k) is the number of integer partitions of k. - Joerg Arndt, Sep 30 2012
a(n) ~ c * d^n, where d = 2.698329106474211231263998666188376330713465125913986356769... (see A246828) and c = 0.414113793172792357745578049739573823627306487211379286647... - Vaclav Kotesovec, Mar 29 2014
G.f.: 1/(2 - 1/(x)inf), where (x)_inf is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Sep 22 2016
Comments