cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055975 First differences of A003188 (decimal equivalent of the Gray Code).

Original entry on oeis.org

1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 32, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, -16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, 64, 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, -4, 1, -2, -1, 16, 1, 2, -1, 4, 1, -2, -1, -8, 1, 2, -1, -4, 1, -2, -1, -32, 1, 2, -1, 4
Offset: 1

Views

Author

Alford Arnold, Jul 22 2000

Keywords

Comments

Multiplicative with a(2^e) = 2^e, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris, May 17 2005
a(A091072(n)) > 0; a(A091067(n)) < 0. - Reinhard Zumkeller, Apr 28 2012
In the binary representation of n, clear everything left of the least significant 1 bit, and negate if the bit left of it was set originally. - Ralf Stephan, Aug 23 2013
This sequence is the trace of n in the minimal alternating binary representation of n (defined at A256696). - Clark Kimberling, Apr 07 2015

Examples

			Since A003188 is 0, 1,  3, 2, 6,  7,  5, 4, 12, 13, 15, 14, 10, ...,
sequence begins  1, 2, -1, 4, 1, -2, -1, 8,  1,  2, -1,  4, ... .
		

Crossrefs

Cf. A003188, A006519 (unsigned), A007814.
MASKTRANSi transform of A053644 (conjectural).

Programs

  • Haskell
    a055975 n = a003188 n - a003188 (n-1)
    a055975_list = zipWith (-) (tail a003188_list) a003188_list
    -- Reinhard Zumkeller, Apr 28 2012
    
  • Maple
    nmax:=100: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (-1)^(n+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 27 2013
  • Mathematica
    f[n_]:=BitXor[n,Floor[n/2]];Differences[Array[f,120,0]] (* Harvey P. Dale, Jul 18 2011, applying Robert G. Wilson v's program from A003188 *)
  • PARI
    a(n)=((-1)^((n/2^valuation(n,2)-1)/2)*2^valuation(n,2)) \\ Ralf Stephan
    
  • Python
    def A055975(n): return (n^(n>>1))-((n-1)^(n-1>>1)) # Chai Wah Wu, Jun 29 2022

Formula

a(2n) = 2a(n), a(2n+1) = (-1)^n. G.f. sum(k>=0, 2^k*t/(1+t^2), t=x^2^k). a(n) = 2^A007814(n) * (-1)^((n/2^A007814(n)-1)/2). - Ralf Stephan, Oct 29 2003
a((2*n-1)*2^p) = (-1)^(n+1)*2^p, p >= 0. - Johannes W. Meijer, Jan 27 2013

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 05 2000