A055979 Solutions (value of r) of the Diophantine equation 2*x^2 + 3*x + 2 = r^2.
4, 11, 134, 373, 4552, 12671, 154634, 430441, 5253004, 14622323, 178447502, 496728541, 6061962064, 16874148071, 205928262674, 573224305873, 6995498968852, 19472752251611, 237641036678294, 661500352248901, 8072799748093144, 22471539224211023
Offset: 0
References
- H.-J. Rack, On the length and height of Chebyshev polynomials in one and two variables, East Journal on Approximations, 16 (2010), 35 - 91. See Theorem 5.2.1, Remark (k), and Table 5.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Seon-Hong Kim and Kenneth B. Stolarsky, Translations and extensions of the Nicomachus identity, arXiv:2306.17402 [math.NT], 2023. See also J. Int. Seq. (2024), Vol. 27, Issue 6, Art. No. 24.6.3, p. 12.
- Zenon Kulpa, On the properties of discrete circles, rings, and disks, Computer Graphics and Image Processing, 10(1979), 348-365.
- M. D. McIlroy, Best approximate circles on integer grids, ACM Transactions on Graphics 2(1983), 237-263.
- Heinz-Joachim Rack, A comment on the Integer Sequence A055979
- Ville Salo, Subshifts with sparse traces, University of Turki, Finland (2019).
- Index entries for linear recurrences with constant coefficients, signature (0,34,0,-1).
Crossrefs
Cf. A006452.
Programs
-
Magma
I:=[4,11,134,373]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 19 2015
-
Maple
a:= n-> (Matrix([11,4,1,2]). Matrix([[0,1,0,0], [34,0,1,0], [0,0,0,1], [ -1,0,0,0]])^n)[1,2]: seq(a(n), n=0..25); # Alois P. Heinz, Jun 03 2009
-
Mathematica
LinearRecurrence[{0,34,0,-1},{4,11,134,373},20] (* Harvey P. Dale, Feb 21 2012 *)
-
PARI
Vec((4+11*x-2*x^2-x^3)/(1+x^4-34*x^2) + O(x^50)) \\ Altug Alkan, Nov 15 2015
Formula
G.f.: (4+11*x-2*x^2-x^3) / (1+x^4-34*x^2). - Alois P. Heinz, Jun 03 2009
a(n) = 34*a(n-2) - a(n-4); a(0)=4, a(1)=11, a(2)=134, a(3)=373. - Harvey P. Dale, Feb 21 2012
Extensions
More terms from Alois P. Heinz, Jun 03 2009
Comments