cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056003 a(n) = (n+1)*binomial(n+8, 8).

Original entry on oeis.org

1, 18, 135, 660, 2475, 7722, 21021, 51480, 115830, 243100, 481338, 906984, 1637610, 2848860, 4796550, 7845024, 12503007, 19468350, 29683225, 44401500, 65270205, 94427190, 134617275, 189329400, 262957500, 360988056, 490217508, 659002960, 877549860, 1158240600
Offset: 0

Views

Author

Barry E. Williams, Jun 12 2000

Keywords

Comments

Original name: A second-order recursive sequence.

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A056117.
Cf. A093644 ((9, 1) Pascal, column m=9).
Cf. A000142, A007318, A052206, A245334, A254142 (partial sums).

Programs

  • Haskell
    a056003 n = (n + 1) * a007318' (n + 8) 8
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Maple
    a:=n->(sum((numbcomp(n,9)), j=9..n)):seq(a(n), n=9..35); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    a[n_] := (n+1)*Binomial[n+8, 8]; Array[a, 50, 0] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    a(n) = (n+1)*binomial(n+8, 8) \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1+8*x)/(1-x)^10.
a(n) = A245334(n+8,8)/A000142(8). - Reinhard Zumkeller, Aug 31 2014
From Amiram Eldar, Jan 15 2023: (Start)
Sum_{n>=0} 1/a(n) = 4*Pi^2/3 - 266681/22050.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2/3 - 38656*log(2)/105 + 611409/2450. (End)