cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056008 Difference between (smallest square strictly greater than 2^n) and 2^n.

Original entry on oeis.org

3, 2, 5, 1, 9, 4, 17, 16, 33, 17, 65, 68, 129, 89, 257, 356, 513, 697, 1025, 1337, 2049, 2449, 4097, 4001, 8193, 4417, 16385, 17668, 32769, 24329, 65537, 4633, 131073, 18532, 262145, 74128, 524289, 296512, 1048577, 1186048, 2097153, 1778369
Offset: 0

Views

Author

Henry Bottomley, Jul 24 2000

Keywords

Comments

If n is even, a(n) = 2*2^(n/2) + 1, since 2^n = (2^(n/2))^2, and a(n) = (2^(n/2) + 1)^2 - (2^(n/2))^2 = 2*2^(n/2) + 1. - Jean-Marc Rebert, Mar 02 2016
If n is odd, a(n) = 4*a(n-2) or 4*a(n-2) - 4*sqrt(a(n-2) + 2^(n-2)) + 1. - Robert Israel, Mar 02 2016

Examples

			a(5)=6^2-2^5=4; a(6)=9^2-2^6=17
		

Crossrefs

Bisections: A000051, A238454.

Programs

  • Magma
    [(Floor(2^(n/2))+1)^2-2^n : n in [0..50]]; // Vincenzo Librandi, Mar 03 2016
    
  • Maple
    f:= proc(n) local m;
       if n::even then m:= 2*2^(n/2)+1
       else m:= ceil(sqrt(2)*2^((n-1)/2))
       fi;
       m^2-2^n
    end proc:
    map(f, [$0..100]); # Robert Israel, Mar 02 2016
  • Mathematica
    ssg[n_]:=Module[{s=2^n},(1+Floor[Sqrt[s]])^2-s]; Array[ssg,50,0] (* Harvey P. Dale, Aug 22 2015 *)
    Table[((Floor[2^(n/2)] + 1)^2 - 2^n), {n, 0, 50}] (* Vincenzo Librandi, Mar 03 2016 *)
  • Python
    from math import isqrt
    def A056008(n): return (isqrt(m:=1<Chai Wah Wu, Apr 28 2023

Formula

a(n) = (floor(2^(n/2))+1)^2 - 2^n = (A017910(n)+1)^2 - A000079(n). - Vladeta Jovovic, May 01 2003
a(2k) = 2*2^k + 1 = 2*a(2(k-1)) - 1. - Jean-Marc Rebert, Mar 02 2016