cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056046 Number of 3-antichain covers of a labeled n-set.

Original entry on oeis.org

0, 0, 0, 2, 56, 790, 8380, 76482, 638736, 5043950, 38390660, 285007162, 2079779416, 14995363110, 107204473740, 761823557042, 5390550296096, 38026057186270, 267656481977620, 1881017836414122, 13204444871932776, 92618543463601430, 649270263511862300
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 25 2000

Keywords

Examples

			There are 2 3-antichain covers of a labeled 3-set: {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
		

References

  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A047707.

Programs

  • Mathematica
    Table[(1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2), {n, 0, 50}] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{22,-190,820,-1849,2038,-840},{0,0,0,2,56,790},30] (* Harvey P. Dale, Dec 09 2017 *)
  • PARI
    for(n=0,50, print1((1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2), ", ")) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = (1/6)*(7^n-6*5^n+6*4^n+3*3^n-6*2^n+2).
G.f.: -2*x^3*(31*x^2-6*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Nov 27 2012