cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056117 Expansion of (1+8*x)/(1-x)^9.

Original entry on oeis.org

1, 17, 117, 525, 1815, 5247, 13299, 30459, 64350, 127270, 238238, 425646, 730626, 1211250, 1947690, 3048474, 4657983, 6965343, 10214875, 14718275, 20868705, 29156985, 40190085, 54712125, 73628100, 98030556, 129229452, 168785452
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A093644 ((9, 1) Pascal, column m=8). Partial sums of A052206.

Programs

  • GAP
    List([0..30], n-> (9*n+8)*Binomial(n+7, 7)/8 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [(9*n+8)*Binomial(n+7, 7)/8: n in [0..30]]; // G. C. Greubel, Jan 18 2020
    
  • Maple
    seq( (9*n+8)*binomial(n+7, 7)/8, n=0..30); # G. C. Greubel, Jan 18 2020
  • Mathematica
    Table[9*Binomial[n+8,8] -8*Binomial[n+7,7], {n,0,30}] (* G. C. Greubel, Jan 18 2020 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,117,525,1815,5247,13299,30459,64350},30] (* Harvey P. Dale, Nov 23 2022 *)
  • PARI
    vector(31, n, (9*n-1)*binomial(n+6, 7)/8) \\ G. C. Greubel, Jan 18 2020
    
  • Sage
    [(9*n+8)*binomial(n+7, 7)/8 for n in (0..30)] # G. C. Greubel, Jan 18 2020
    

Formula

a(n) = (9*n+8)*binomial(n+7, 7)/8.
G.f.: (1+8*x)/(1-x)^9.
From G. C. Greubel, Jan 18 2020: (Start)
a(n) = 9*binomial(n+8,8) - 8*binomial(n+7,7).
E.g.f.: (40320 + 645120*x + 1693440*x^2 + 1505280*x^3 + 588000*x^4 + 112896*x^5 + 10976*x^6 + 512*x^7 + 9*x^8)*exp(x)/40320. (End)