cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056118 a(n) = (11*n+5)*(n+4)*(n+3)*(n+2)*(n+1)/120.

Original entry on oeis.org

1, 16, 81, 266, 686, 1512, 2982, 5412, 9207, 14872, 23023, 34398, 49868, 70448, 97308, 131784, 175389, 229824, 296989, 378994, 478170, 597080, 738530, 905580, 1101555, 1330056, 1594971, 1900486, 2251096, 2651616, 3107192, 3623312
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

Crossrefs

Cf. A055268.

Programs

  • GAP
    List([0..40], n-> (11*n+5)*Binomial(n+4, 4)/5 ); # G. C. Greubel, Jan 17 2020
  • Magma
    [(11*n+5)*Binomial(n+4, 4)/5: n in [0..40]]; // G. C. Greubel, Jan 17 2020
    
  • Maple
    seq( (11*n+5)*binomial(n+4, 4)/5, n=0..40); # G. C. Greubel, Jan 17 2020
  • Mathematica
    Table[((11n+5)Times@@(n+Range[4]))/120,{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1}, {1,16,81,266,686,1512}, 40] (* Harvey P. Dale, Oct 18 2013 *)
    Table[11*Binomial[n+5,5] -8*Binomial[n+4,4], {n,0,40}] (* G. C. Greubel, Jan 17 2020 *)
  • PARI
    vector(41, n, (11*n-6)*binomial(n+3,4)/5 ) \\ G. C. Greubel, Jan 17 2020
    
  • Sage
    [(11*n+5)*binomial(n+4, 4)/5 for n in (0..40)] # G. C. Greubel, Jan 17 2020
    

Formula

a(n) = (11*n+5)*binomial(n+4,4)/5.
G.f.: (1+10*x)/(1-x)^6.
a(0)=1, a(1)=16, a(2)=81, a(3)=266, a(4)=686, a(5)=1512; for n>5, a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6). - Harvey P. Dale, Oct 18 2013
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = 11*binomial(n+5,5) - 8*binomial(n+4,4).
E.g.f.: (360 +2760*x +3720*x^2 +1560*x^3 +235*x^4 +11*x^5)*exp(x)/120. (End)