A056124 a(n) = 3*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=11.
1, 11, 40, 117, 319, 848, 2233, 5859, 15352, 40205, 105271, 275616, 721585, 1889147, 4945864, 12948453, 33899503, 88750064, 232350697, 608302035, 1592555416, 4169364221, 10915537255, 28577247552, 74816205409
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Programs
-
GAP
List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020
-
Magma
[Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020
-
Maple
with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020
-
Mathematica
LinearRecurrence[{4,-4,1},{1,11,40},30] (* Harvey P. Dale, Mar 25 2015 *)
-
PARI
vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020
-
Sage
[fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020
Formula
a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8.
G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)).
a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8.
E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End)