cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A082951 Number of primitive (aperiodic) word structures of length n using an infinite alphabet.

Original entry on oeis.org

1, 1, 1, 4, 13, 51, 197, 876, 4125, 21142, 115922, 678569, 4213381, 27644436, 190898444, 1382958489, 10480138007, 82864869803, 682076784814, 5832742205056, 51724158119384, 474869816155870, 4506715737768752, 44152005855084345, 445958869290587567
Offset: 0

Views

Author

Vadim Ponomarenko (vadim123(AT)gmail.com), May 26 2003

Keywords

Comments

Permuting the alphabet will not change a word structure. Thus aabc and bbca have the same structure.
Row sums of triangle A137651. - Gary W. Adamson, Feb 01 2008

Examples

			There are A000110(3)=5 word structures of length 3: aaa, aab, aba, abb, abc. The first consists of 3 copies of a word of length 1; the other 4 are primitive. So a(3)=4.
		

Crossrefs

Programs

  • Maple
    with(combinat,bell): with(numtheory): newb := proc(n) local s,i; s := 0; for i in divisors(n) do s := s+bell(i)*mobius(n/i): end do: end proc;
    # second Maple program:
    with(combinat): with(numtheory):
    a:= proc(n) option remember;
          bell(n)-add(a(d), d=divisors(n) minus {n})
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 23 2015
  • Mathematica
    a[n_] := DivisorSum[n, BellB[#] MoebiusMu[n/#]&]; a[0]=1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 23 2017 *)

Formula

a(n) = sum mu(c)*A000110(d) over all cd=n; equivalently, A000110(n) = sum a(k), where the sum is over all k|n.
1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) is the g.f. of A000110. - Ilya Gutkovskiy, Mar 05 2018

Extensions

More terms from Alois P. Heinz, Jan 23 2015
Showing 1-1 of 1 results.