A056310 Number of reversible strings with n beads using exactly three different colors.
0, 0, 3, 18, 78, 273, 921, 2916, 9150, 28065, 85773, 259848, 785778, 2367813, 7128201, 21427956, 64382550, 193326105, 580372293, 1741847328, 5227116378, 15684323853, 47059266081, 141189861996
Offset: 1
Examples
For n=3, the three rows are ABC, ACB, and BAC, being respectively equivalent to CBA, BCA, and CAB, with which they form chiral pairs. - _Robert A. Russell_, Sep 25 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-6,-24,49,6,-66,36).
Crossrefs
Programs
-
Maple
seq(coeff(series(-3*x^3*(12*x^4-5*x^3-4*x^2+1)/((x-1)*(2*x-1)*(3*x-1)*(2*x^2-1)*(3*x^2-1)),x,n+1), x, n), n = 1..25); # Muniru A Asiru, Sep 27 2018
-
Mathematica
k=3; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *) LinearRecurrence[{6, -6, -24, 49, 6, -66, 36}, {0, 0, 3, 18, 78, 273, 921}, 40] (* Vincenzo Librandi, Sep 27 2018 *)
Formula
G.f.: -3*x^3*(12*x^4 - 5*x^3 - 4*x^2 + 1)/((x - 1)*(2*x - 1)*(3*x - 1)*(2*x^2 - 1)*(3*x^2 - 1)). [Colin Barker, Jul 07 2012]
Comments