A305621
Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
The triangle begins:
1;
1, 1;
1, 4, 3;
1, 8, 18, 12;
1, 18, 78, 120, 60;
1, 34, 273, 780, 900, 360;
1, 70, 921, 4212, 8400, 7560, 2520;
1, 134, 2916, 20424, 63000, 95760, 70560, 20160;
1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440;
...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.
-
Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019
A056329
Number of reversible string structures with n beads using exactly five different colors.
Original entry on oeis.org
0, 0, 0, 0, 1, 9, 76, 542, 3523, 21393, 123680, 690550, 3756151, 20042589, 105394296, 548123982, 2826435403, 14479204833, 73794961960, 374603884910, 1895632969351, 9568915372269, 48208452866816
Offset: 1
For a(6)=9, the color patterns are ABCDEA, ABCDBA, ABCCDE, AABCDE, ABACDE, ABCADE, ABCDAE, ABBCDE, and ABCBDE. The first three are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Index entries for linear recurrences with constant coefficients, signature (13, -48, -36, 551, -683, -1542, 3546, 80, -4280, 2400).
-
k=5; Table[(StirlingS2[n,k] + If[EvenQ[n], 3StirlingS2[n/2+2,5] - 11StirlingS2[n/2+1,5] + 6StirlingS2[n/2,5], StirlingS2[(n+5)/2,5] - 3StirlingS2[(n+3)/2,5]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k=5; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
LinearRecurrence[{13, -48, -36, 551, -683, -1542, 3546, 80, -4280, 2400}, {0, 0, 0, 0, 1, 9, 76, 542, 3523, 21393}, 30] (* Robert A. Russell, Oct 14 2018 *)
A305625
Number of chiral pairs of rows of n colors with exactly 5 different colors.
Original entry on oeis.org
0, 0, 0, 0, 60, 900, 8400, 63000, 417000, 2551440, 14802900, 82763100, 450501660, 2404493700, 12645952200, 65771370000, 339164682000, 1737485315640, 8855354531100, 44952362878500, 227475739300260, 1148269299919500, 5785013208282000, 29100046926951000, 146201097996135000, 733811769167043840, 3680292427100043300, 18446421887430345900, 92412024657725026860, 462780012983867889300, 2316780309783100387800
Offset: 1
For a(5) = 60, the chiral pairs are the 5! = 120 permutations of ABCDE, each paired with its reverse.
A056456(n) is number of achiral rows of n colors with exactly 5 different colors.
-
k=5; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
a(n) = 60*(stirling(n, 5, 2) - stirling(ceil(n/2), 5, 2)); \\ Altug Alkan, Sep 26 2018
A056321
Number of primitive (aperiodic) reversible strings with n beads using exactly five different colors.
Original entry on oeis.org
0, 0, 0, 0, 60, 900, 8400, 63000, 417120, 2551500, 14804700, 82764000, 450518460, 2404502100, 12646078140, 65771433000, 339165516120, 1737485731740, 8855359634100, 44952365429940, 227475768899460
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-4 of 4 results.
Comments