cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A152176 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of bracelet structures of length n using exactly k different colored beads. Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure. - Andrew Howroyd, Apr 06 2017
The number of achiral structures (A) is given in A140735 (odd n) and A293181 (even n). The number of achiral structures plus twice the number of chiral pairs (A+2C) is given in A152175. These can be used to determine A+C by taking half their average, as is done in the Mathematica program. - Robert A. Russell, Feb 24 2018
T(n,k)=pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with exactly k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,   1;
  1,  3,   2,    1;
  1,  3,   5,    2,    1;
  1,  7,  14,   11,    3,    1;
  1,  8,  31,   33,   16,    3,   1;
  1, 17,  82,  137,   85,   27,   4,  1;
  1, 22, 202,  478,  434,  171,  37,  4, 1;
  1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056357, A056358, A056359, A056360, A056361.
Row sums are A084708.
Partial row sums include A000011, A056353, A056354, A056355, A056356.
Cf. A081720, A273891, A008277 (set partitions), A284949 (up to reflection), A152175 (up to rotation).

Programs

  • Mathematica
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
      (* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
      {i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
    Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
    + Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={(R(n) + Ach(n))/2}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

A084708 Number of set partitions up to rotations and reflections.

Original entry on oeis.org

1, 2, 3, 7, 12, 37, 93, 354, 1350, 6351, 31950, 179307, 1071265, 6845581, 46162583, 327731950, 2437753740, 18948599220, 153498350745, 1293123243928, 11306475314467, 102425554299516, 959826755336242, 9290811905391501
Offset: 1

Views

Author

Wouter Meeussen, Jul 02 2003

Keywords

Comments

Combines the symmetry operations of A080107 and A084423.
Equivalently, number of n-bead bracelets using any number of unlabeled (interchangable) colors. - Andrew Howroyd, Sep 25 2017

Examples

			SetPartitions[6] is the first to decompose differently from A084423: 4 cycles of length 1, 2 of 2, 9 of 3, 16 of 6, 6 of 12.
a(7) = 1 + A056357(7) + A056358(7) + A056359(7) + A056360(7) + A056361(7) + 1 = 1 + 8 + 31 + 33 + 16 + 3 + 1 = 93.
		

Crossrefs

Programs

  • Mathematica
    <A080107 *); Table[{Length[ # ], First[ # ]}&/@ Split[Sort[Length/@Split[Sort[First[Sort[Flatten[ {#, Map[Sort, (#/. i_Integer:>w+1-i), 2]}& @(NestList[Sort[Sort/@(#/. i_Integer :> Mod[i+1, w, 1])]&, #, w]), 1]]]&/@SetPartitions[w]]]]], {w, 1, 10}]
    u[0,j_]:=1;u[k_,j_]:=u[k,j]=Sum[Binomial[k-1,i-1]Plus@@(u[k-i,j]#^(i-1)&/@Divisors[j]),{i,k}]; a[n_]:=1/n*Plus@@(EulerPhi[ # ]u[Quotient[n,# ],# ]&/@Divisors[n]); Table[a[n]/2+If[EvenQ[n],u[n/2,2],Sum[Binomial[n/2-1/2,k] u[k,2], {k,0,n/2-1/2}]]/2,{n,40}] (* Wouter Meeussen, Dec 06 2008 *)

Formula

a(n) = (A080107(n)+A084423(n))/2. - Wouter Meeussen and Vladeta Jovovic, Nov 28 2008

Extensions

a(12) from Vladeta Jovovic, Jul 15 2007
More terms from Vladeta Jovovic's formula given in Mathematica line. - Wouter Meeussen, Dec 06 2008

A214311 a(n) is the number of representative five-color bracelets (necklaces with turning over allowed) with n beads, for n >= 5.

Original entry on oeis.org

12, 30, 150, 633, 3260, 16212, 66810, 298495, 1410402, 6403842, 31103899, 135342046, 633228696, 2936824916, 13676037486, 65355191817, 298065986582, 1398226666434, 6585151203697, 30958838054304, 148994847644780
Offset: 5

Views

Author

Wolfdieter Lang, Aug 08 2012

Keywords

Comments

This is the fifth column (m=5) of triangle A213940.
The relevant p(n,5)= A008284(n,5) representative color multinomials have exponents (signatures) from the five-part partitions of n, written with nonincreasing parts. E.g., n=7: [3,1,1,1,1] and [2,2,1,1,1] (p(7,5)=2). The corresponding representative bracelets have the five-color multinomials c[1]^3*c[2]*c[3]*c[4]*c[5] and c[1]^2*c[2]^2*c[3]*c[4]*c[5].
Number of n-length bracelets w over a 5-ary alphabet {a1,a2,...,a5} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a5) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226884). The number of 5 color bracelets up to permutations of colors is given by A056360. - Andrew Howroyd, Sep 26 2017

Examples

			a(5) = A213940(5,5) = A213939(5,7) = 12 from the representative bracelets (with colors j for c[j], j=1,...,5) 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235 and 14325, all taken cyclically.
		

Crossrefs

Cf. A213939, A213940, A214309 (m=4 case), A214313 (m=5, all bracelets).

Formula

a(n) = A213940(n,5), n >= 5.
a(n) = sum(A213939(n,k),k= b(n,5)..b(n,6)-1), n>=6, with b(n,m) = A214314(n,m) the position where the first m part partition of n appears in the Abramowitz-Stegun ordering of partitions (see A036036 for the reference and a historical comment). a(5) = A213939(5,b(5,5)) = A213939(5,7) = 12.

A320645 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using exactly 5 colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 51, 339, 2010, 10900, 56700, 286888, 1426542, 7014746, 34229050, 166197824, 804243285, 3883608940, 18729354638, 90266471623, 434946282498, 2096010533584, 10104160993993, 48733654211358, 235195966291020, 1135892493220025, 5490005931157446, 26555178320890184, 128550000630553133, 622790399873432344, 3019641804537586657
Offset: 1

Views

Author

Robert A. Russell, Oct 18 2018

Keywords

Comments

Two color patterns are the same if the colors are permuted. A chiral cycle is different from its reverse.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A056298 and A304975, which can be used in conjunction with the first formula.

Examples

			For a(7)=4, the chiral pairs are AABACDE-AABCDAE, AABCBDE-AABCDED, AABCDBE-AABCDEC, and ABACBDE-ABACDBE.
		

Crossrefs

Column 5 of A320647.
Cf. A056298 (oriented), A056360 (unoriented), A304975 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    k=5; Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n) - Ach[n,k]/2,{n,40}]

Formula

a(n) = (A056298(n) - A304975(n)) / 2 = A056298(n) - A056360(n) = A056360(n) - A304975(n).
a(n) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where k=5 is number of colors or sets, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
Showing 1-4 of 4 results.