cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056463 Number of primitive (aperiodic) palindromes using exactly two different symbols.

Original entry on oeis.org

0, 0, 2, 2, 6, 4, 14, 12, 28, 24, 62, 54, 126, 112, 246, 240, 510, 476, 1022, 990, 2030, 1984, 4094, 4020, 8184, 8064, 16352, 16254, 32766, 32484, 65534, 65280, 131006, 130560, 262122, 261576, 524286, 523264, 1048446, 1047540, 2097150, 2094988, 4194302, 4192254
Offset: 1

Views

Author

Keywords

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 2 of A327873.

Programs

  • PARI
    seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
    
  • Python
    from sympy import mobius, divisors
    def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024

Formula

a(n) = Sum_{d|n} mu(d)*A056453(n/d).
G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - Andrew Howroyd, Sep 29 2019

Extensions

Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019