cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A056479 Number of primitive (aperiodic) palindromic structures using a maximum of five different symbols.

Original entry on oeis.org

1, 1, 0, 1, 1, 4, 3, 14, 13, 50, 47, 201, 196, 854, 840, 3839, 3830, 18001, 17947, 86471, 86419, 421989, 421803, 2079474, 2079260, 10306747, 10305897, 51263890, 51263086, 255514354, 255510460, 1275163904, 1275160060, 6368612099, 6368594300, 31821472593, 31821454413
Offset: 0

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A056470(n/d) for n > 0.
a(n) = Sum_{k=1..5} A284826(n, k) for n > 0. - Andrew Howroyd, Oct 02 2019

Extensions

a(0)=1 prepended and terms a(32) and beyond from Andrew Howroyd, Oct 02 2019

A056506 Number of periodic palindromic structures using a maximum of five different symbols.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 13, 15, 41, 52, 143, 202, 564, 855, 2433, 3845, 11101, 18002, 52662, 86472, 255128, 422005, 1252898, 2079475, 6197590, 10306752, 30796243, 51263942, 153411664, 255514355, 765393943, 1275163905, 3822001141, 6368612302, 19095317552, 31821472612
Offset: 0

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{k=1..5} A285012(n, k) for n > 0. - Andrew Howroyd, Oct 01 2019

Extensions

Corrected by T. D. Noe, Oct 25 2006
a(0)=1 prepended and terms a(17) and beyond from Andrew Howroyd, Oct 01 2019

A164904 a(n) is the number of palindromic structures using a maximum of ten different symbols.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 15, 15, 52, 52, 203, 203, 877, 877, 4140, 4140, 21147, 21147, 115975, 115975, 678569, 678569, 4213530, 4213530, 27641927, 27641927, 190829797, 190829797, 1381367941, 1381367941, 10448276360, 10448276360, 82285618467
Offset: 0

Views

Author

Tanya Khovanova, Aug 30 2009

Keywords

Comments

a(n) is the number of palindromic word structures of length n using 10-ary alphabet.
a(n) is the same as taking every element twice from A164864.

Examples

			Four-digit palindromes have two different digits structures: aaaa and abba. Hence a(4)=2.
		

Crossrefs

Formula

G.f.: (148329*x^17 -403200*x^16 -210253*x^15 +732960*x^14 +122692*x^13 -557864*x^12 -38365*x^11 +233100*x^10 +6965*x^9 -58674*x^8 -736*x^7 +9135*x^6 +42*x^5 -861*x^4 -x^3 +45*x^2 -1) / ((x -1)*(2*x -1)*(2*x +1)*(2*x^2 -1)*(3*x^2 -1)*(5*x^2 -1)*(6*x^2 -1)*(7*x^2 -1)*(8*x^2 -1)*(10*x^2 -1)). [Colin Barker, Dec 05 2012]

A188164 Number of palindromic structures of length n.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 15, 15, 52, 52, 203, 203, 877, 877, 4140, 4140, 21147, 21147, 115975, 115975, 678570, 678570, 4213597, 4213597, 27644437, 27644437, 190899322, 190899322, 1382958545, 1382958545
Offset: 0

Views

Author

Keywords

Comments

Permuting the symbols does not change the structure; so e.g. aba and bab are equivalent.

Examples

			For n=4, the 2 structures are aaaa and abba. For n=5, the 5 structures are aaaaa, aabaa, ababa, abbba, and abcba.
		

Crossrefs

Formula

a(2n) = a(2n-1) = B(n), where B(n) = A000110(n) are the Bell numbers.

A056474 Number of palindromic structures using exactly five different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 15, 15, 140, 140, 1050, 1050, 6951, 6951, 42525, 42525, 246730, 246730, 1379400, 1379400, 7508501, 7508501, 40075035, 40075035, 210766920, 210766920, 1096190550
Offset: 1

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[Floor[(n+1)/2],5],{n,40}] (* Harvey P. Dale, Dec 18 2012 *)

Formula

stirling2( [(n+1)/2], 5).
G.f.: -x^9/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)). [Colin Barker, Jul 24 2012]
Showing 1-5 of 5 results.