A056476 Number of primitive (aperiodic) palindromic structures of length n using a maximum of two different symbols.
1, 1, 0, 1, 1, 3, 2, 7, 6, 14, 12, 31, 27, 63, 56, 123, 120, 255, 238, 511, 495, 1015, 992, 2047, 2010, 4092, 4032, 8176, 8127, 16383, 16242, 32767, 32640, 65503, 65280, 131061, 130788, 262143, 261632, 524223, 523770, 1048575, 1047494, 2097151, 2096127, 4194162
Offset: 0
Keywords
Examples
Example from _Jonathan Frech_, May 21 2021: (Start) The a(9)=14 lexicographically earliest equivalence class members in the alphabet {0,1} are: 000010000 000101000 000111000 001000100 001010100 001101100 001111100 010000010 010101010 010111010 011000110 011010110 011101110 011111110 (End)
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
Table[DivisorSum[n, MoebiusMu[#]*2^Floor[(n/# - 1)/2] &], {n, 46}] (* Michael De Vlieger, May 21 2021 *)
-
PARI
a(n) = if(n==0, 1, sumdiv(n, d, moebius(d)*2^((n/d-1)\2))) \\ Andrew Howroyd, May 21 2021
-
Python
from sympy import mobius, divisors def A056476(n): return sum(mobius(n//d)<<(d-1>>1) for d in divisors(n, generator=True)) if n else 1 # Chai Wah Wu, Feb 18 2024
Formula
a(n) = Sum_{d|n} mu(d)*A016116(n/d-1) for n > 0.
a(n) = Sum_{k=1..2} A284826(n, k) for n > 0. - Andrew Howroyd, May 21 2021
a(n) = A056458(n)/2 for n>=1. - Alois P. Heinz, Feb 18 2025
Extensions
Definition clarified by Jonathan Frech, May 21 2021
a(0)=1 prepended and a(32)-a(45) from Andrew Howroyd, May 21 2021
Comments