cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056488 Number of periodic palindromes using a maximum of six different symbols.

Original entry on oeis.org

6, 21, 36, 126, 216, 756, 1296, 4536, 7776, 27216, 46656, 163296, 279936, 979776, 1679616, 5878656, 10077696, 35271936, 60466176, 211631616, 362797056, 1269789696, 2176782336, 7618738176, 13060694016, 45712429056, 78364164096, 274274574336, 470184984576
Offset: 1

Views

Author

Keywords

Comments

Also number of necklaces with n beads and 6 colors that are the same when turned over and hence have reflection symmetry. - Herbert Kociemba, Nov 24 2016

Examples

			G.f. = 6*x + 21*x^2 + 36*x^3 + 126*x^4 + 216*x^5 + 756*x^6 + 1296*x^7 + ...
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A284855.

Programs

  • Magma
    [IsEven(n) select 6^(n div 2)*7/2 else 6^((n+1) div 2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2018
  • Mathematica
    LinearRecurrence[{0,6},{6,21},30] (* Harvey P. Dale, Feb 02 2015 *)
    k = 6; Table[(k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2]) / 2, {n, 30}] (* Robert A. Russell, Sep 21 2018 *)
    If[EvenQ[#], 6^(# / 2) 7/2, 6^((# + 1) / 2)]&/@Range[30] (* Vincenzo Librandi, Sep 22 2018 *)
  • PARI
    a(n) = if(n%2, 6^((n+1)/2), 7*6^(n/2)/2); \\ Altug Alkan, Sep 21 2018
    

Formula

a(n) = 6^((n+1)/2) for n odd, a(n) = 6^(n/2)*7/2 for n even.
From Colin Barker, Jul 08 2012: (Start)
a(n) = 6*a(n-2).
G.f.: 3*x*(2+7*x)/(1-6*x^2). (End)
a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 2, where k = 6 is the number of possible colors. - Robert A. Russell, Sep 22 2018

Extensions

More terms from Vincenzo Librandi, Sep 22 2018