cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062550 a(n) = Sum_{k = 1..2n} floor(2n/k).

Original entry on oeis.org

0, 3, 8, 14, 20, 27, 35, 41, 50, 58, 66, 74, 84, 91, 101, 111, 119, 127, 140, 146, 158, 168, 176, 186, 198, 207, 217, 227, 239, 247, 261, 267, 280, 292, 300, 312, 326, 332, 344, 356, 368, 377, 391, 399, 411, 425, 435, 443, 459, 467, 482, 492, 502, 514, 528
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2001

Keywords

Comments

The sequence A006218 : Sum_{i=1..n} floor(n/i) = Sum_{i=1..n} sigma_0(i). Sigma_0(i) is A000005. Sequences of the type : Sum_{i=1..f(n)} floor(f(n)/i)= Sum_{i=1..f(n)} sigma_0(i). This sequence a(n)= A006218(2*n). [Ctibor O. Zizka, Mar 21 2009]
For n > 0: row sums of the triangle in A013942. - Reinhard Zumkeller, Jun 04 2013

Crossrefs

Programs

  • Haskell
    a062550 0 = 0
    a062550 n = sum $ a013942_row n  -- Reinhard Zumkeller, Jun 04 2013
    
  • Mathematica
    Table[Total[Floor[2*n/Range[2*n]]], {n, 0, 100}] (* T. D. Noe, Jun 12 2013 *)
  • PARI
    a(n) = sum(k=1, 2*n, (2*n)\k); \\ Michel Marcus, Oct 09 2021
  • Python
    from math import isqrt
    def A062550(n): return (lambda m: 2*sum(2*n//k for k in range(1, m+1))-m*m)(isqrt(2*n)) # Chai Wah Wu, Oct 09 2021
    

Formula

a(n) = A006218(2n) = A056549(n)+A006218(n) = a(n-1)+A000005(2n-1)+A000005(2n)

Extensions

Data corrected for n > 30 by Reinhard Zumkeller, Jun 04 2013

A056548 a(n) = Sum_{k>=1} round(n/k) where round(1/2) = 0.

Original entry on oeis.org

0, 1, 4, 7, 11, 15, 19, 23, 29, 32, 37, 43, 47, 52, 58, 62, 68, 73, 79, 84, 90, 94, 100, 108, 112, 117, 124, 128, 136, 142, 146, 152, 160, 165, 171, 177, 183, 188, 196, 202, 208, 215, 219, 227, 233, 237, 247, 253, 259, 263, 272, 277, 283, 293, 297, 303, 311, 315
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2000

Keywords

Crossrefs

Formula

a(n) = A056549(n) - A001227(n).
Conjecture: a(n) = Sum_{k=n..2n-1} d(k), where d is the number of divisors function (A000005). - Ridouane Oudra, Apr 29 2019

A211707 Rectangular array: R(n,k)=n+[n/2+1/2]+...+[n/k+1/2], where [ ]=floor and k>=1, by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 4, 5, 4, 2, 5, 6, 6, 5, 2, 6, 8, 7, 7, 5, 2, 7, 9, 10, 8, 8, 5, 2, 8, 11, 11, 11, 9, 9, 5, 2, 9, 12, 13, 13, 12, 10, 9, 5, 2, 10, 14, 15, 15, 14, 13, 11, 9, 5, 2, 11, 15, 17, 17, 16, 15, 14, 12, 9, 5, 2, 12, 17, 18, 19, 19, 17, 16, 15, 12, 9, 5, 2, 13, 18, 21
Offset: 1

Views

Author

Clark Kimberling, Apr 20 2012

Keywords

Comments

Limit of n-th row: A056549=(2,5,9,12,17,21,25,...).
Row 1: A000027
Row 2: A007494
R(n,n)=A077024(n)
For n>=1, row n is a homogeneous linear recurrence sequence of order A005728(n) with palindromic recurrence coefficients in the sense described at A211701.

Examples

			Northwest corner:
1...2...3...4...5....6....7
2...3...5...6...8....9....11
2...4...6...7...10...11...12
2...5...7...8...11...13...15
2...5...8...9...12...14...16
		

Crossrefs

Programs

  • Mathematica
    f[n_, m_] := Sum[Floor[n/k + 1/2], {k, 1, m}]
    TableForm[Table[f[n, m], {m, 1, 20}, {n, 1, 16}]]
Showing 1-3 of 3 results.