A056554 Powerfree kernel of 4th-powerfree part of n.
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 1, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 3, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
Offset: 1
Examples
a(64) = 2 because 4th-power-free part of 64 is 4 and power-free kernel of 4 is 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Henry Bottomley, Some Smarandache-type multiplicative sequences.
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^If[Divisible[e, 4], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/4), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019
Formula
a(n) = A007947(A053165(n)) = A053166(A053165(n)) = n/(A053164(n)*A000190(n)) = A053166(n)/A053164(n) = A056553(n)^(1/4).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 4 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 4|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(8)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3513111135... . - Amiram Eldar, Oct 27 2022