cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056579 1+2n+3n^2+4n^3+5n^4.

Original entry on oeis.org

1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737, 35983, 54321, 78915, 111049, 152127, 203673, 267331, 344865, 438159, 549217, 680163, 833241, 1010815, 1215369, 1449507, 1715953, 2017551, 2357265, 2738179, 3163497, 3636543
Offset: 0

Views

Author

Henry Bottomley, Jun 29 2000

Keywords

Examples

			For n>5 this is 54321 translated from base n to base 10
		

Crossrefs

Note: 1+2x+3x^2+4x^3+5x^4 is derivative of 1+x+x^2+x^3+x^4 +x^5, i.e. A053700. Cf. A000012, A005408, A056109, A056578.

Programs

  • Mathematica
    Join[{1},Table[Total[Table[i n^(i-1),{i,5}]],{n,30}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,15,129,547,1593},30] (* Harvey P. Dale, Sep 20 2017 *)
  • PARI
    a(n)=1+2*n+3*n^2+4*n^3+5*n^4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) =(A053700(n+1)-A053700(n-1))/2-10n^2-4n-2.
G.f.: -(3*x^4+42*x^3+64*x^2+10*x+1) / (x-1)^5. - Colin Barker, May 04 2013