cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056588 Coefficient triangle of certain polynomials.

Original entry on oeis.org

1, 1, -1, 1, -2, -1, 1, -4, -4, 1, 1, -7, -16, 7, 1, 1, -12, -53, 53, 12, -1, 1, -20, -166, 318, 166, -20, -1, 1, -33, -492, 1784, 1784, -492, -33, 1, 1, -54, -1413, 9288, 17840, -9288, -1413, 54, 1, 1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

G.f. for column m: see column sequences: A000012, A000071, A056589-91, for m=0..4.
The row polynomials p(n,x) := sum(a(n,m)*x^m) occur as numerators of the g.f. for the (n+1)-th power of Fibonacci numbers A000045. The corresponding denominator polynomials are the row polynomials q(n+2,x) = Sum_{m=0..n+2} A055870(n+2, m)*x^m (signed Fibonomial triangle).
The row polynomials p(n,x) and the companion denominator polynomials q(n,x) can be deduced from Riordan's recursion result.
The explicit formula is found from the recursion relation for powers of Fibonacci numbers (see Knuth's exercise with solution). - Roger L. Bagula, Apr 03 2010

Examples

			Row polynomial for n=4: p(4,x) = 1 - 7*x - 16*x^2 + 7*x^3 + x^4. x*p(4,x) is the numerator of the g.f. for A056572(n), n >= 0 (fifth power of Fibonacci numbers) {0,1,1,32,243,...}. The denominator polynomial is Sum_{m=0..6} A055870(6,m)*x^m (n=6 row polynomial of signed fibonomial triangle).
From _Roger L. Bagula_, Apr 03 2010: (Start)
1;
1,  -1;
1,  -2,    -1;
1,  -4,    -4,     1;
1,  -7,   -16,     7,      1;
1, -12,   -53,    53,     12,      -1;
1, -20,  -166,   318,    166,     -20,     -1;
1, -33,  -492,  1784,   1784,    -492,    -33,    1;
1, -54, -1413,  9288,  17840,   -9288,  -1413,   54,  1;
1, -88, -3960, 46233, 163504, -163504, -46233, 3960, 88, -1; (End)
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 84, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

  • Maple
    A056588 := proc(n,k)
        if k = 0 then
            1;
        elif k >n then
            0;
        else
            combinat[fibonacci](k+1)^(n+1)+add( A055870(n+2, j)*(combinat[fibonacci](k+1-j)^(n+1)), j=1..k) ;
        end if;
    end proc: # R. J. Mathar, Jun 14 2015
  • Mathematica
    p[x_, n_] = Sum[(((1 + Sqrt[5])^k - (1 - Sqrt[5])^k)/(2^k*Sqrt[5]))^n*x^k, {k, 0, Infinity}];
    a = Table[CoefficientList[FullSimplify[Numerator[p[ x, n]]/x], x]/2^(1 + Floor[n/2]), {n, 1, 10}];
    Table[a[[n]]/a[[n]][[1]], {n, 1, 10}];
    Flatten[%] (* Roger L. Bagula, Apr 03 2010 *)
  • PARI
    S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
    T(n, k) = sum(j=0, k, fibonacci(k+1-j)^(n+1) * S(n+2, j));
    tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
    tabl(9); \\ Tony Foster III, Aug 20 2018

Formula

a(n, m)=0 if nA000045(n) (Fibonacci) and sfibonomial(n, m) := A055870(n, m).
From Roger L. Bagula, Apr 03 2010: (Start)
p(x,n) = Sum_{k>=0} (((1 + sqrt(5))^k - (1 - sqrt(5))^k)/(2^k*sqrt(5)))^n*x^k;
t(n,m) = Numerator_coefficients(p(x,n)/x)/2^(1 + floor(n/2));
out(n,m) = t(n,m)/t(n,1). (End)
T(n, k) = Sum_{j=0..k} Fibonacci(k+1-j)^(n+1) * A055870(n+2, j). - Tony Foster III, Aug 20 2018
Sum_{j=0..n-1} a(n-1, n-1-j)*A010048(k+j, n) = Fibonacci(k)^n. - Tony Foster III, Jul 24 2018