A056612 a(n) = gcd(n!, n!*(1 + 1/2 + 1/3 + ... + 1/n)).
1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 156764160000, 9876142080000, 217275125760000, 217275125760000, 1738201006080000, 1738201006080000
Offset: 1
Examples
a(4) = gcd(4!, 4!*(1 + 1/2 + 1/3 + 1/4)) = gcd(24, 50) = 2. a(4) = gcd(A000254(5), A000254(4)) = gcd(5!*(1 + 1/2 + 1/3 + 1/4 + 1/5), 4!*(1 + 1/2 + 1/3 + 1/4)) = gcd(274, 50) = 2. - _Petros Hadjicostas_, May 18 2020
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..535
Crossrefs
Programs
-
Mathematica
Table[GCD[#, # Total@ Map[1/# &, Range@ n]] &[n!], {n, 25}] (* Michael De Vlieger, Sep 23 2017 *) a[n_] := n!/Denominator@ HarmonicNumber@ n; Array[a, 25] (* Robert G. Wilson v, Jun 30 2018 *)
-
PARI
a(n) = gcd(n!, n!*sum(k=1, n, 1/k)); \\ Michel Marcus, Jul 14 2018
-
PARI
a(n) = gcd(stirling(n+1, 2, 1), n!); \\ Michel Marcus, May 20 2020
Formula
a(n) = gcd(Stirling1(n+1, 2), n!). - Michel Marcus, May 20 2020
Comments