cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056624 Number of unitary square divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 08 2000

Keywords

Comments

Unitary analog of A046951.
The number of exponential divisors (A322791) of n that are cubefree (A004709). - Amiram Eldar, Jun 03 2025

Examples

			n=256, it has 5 square divisors of which only 2,{1,256} are unitary, 3 divisors are not.
n=124 has 2 (1 and 4) square divisors, both of them unitary a(124) = 2.
n=108 has 12 divisors, 4 square divisors: {1,4,9,36} of which 1 and 4 are unitary, 9 and 36 are not. So a(108)=2. The largest unitary square divisor of 108 is 4 with 1 prime divisor so a(108) = 2^1 = 2.
		

Crossrefs

Programs

  • Maple
    isA056624 := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = d and igcd(n/d^2, d) = 1:
    a := n -> nops(select(k -> isA056624(n, k), [seq(1..n)])):  # Peter Luschny, Jun 13 2025
  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 28 2017 *)
    f[p_, e_] := 2^(1 - Mod[e, 2]); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(d, n/d)==1, issquare(d))); \\ Michel Marcus, Jul 28 2017
    
  • Python
    from sympy import factorint
    def A056624(n): return 1<Chai Wah Wu, Aug 03 2024
    
  • Python
    def is_A056624(n, d): return gcd(n, d) == d and gcd(n//d, d) == d and gcd(n//(d*d), d) == 1
    def a(n): return len([k for k in range(1, n+1) if is_A056624(n, k)])
    print([a(n) for n in range(1, 106)])  # Peter Luschny, Jun 13 2025
  • Scheme
    (define (A056624 n) (if (= 1 n) n (* (A000079 (A059841 (A067029 n))) (A056624 (A028234 n))))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = 2^r, where r is the number of prime factors of the largest unitary square divisor of n.
Multiplicative with a(p^e) = 2^(1-(e mod 2)). - Vladeta Jovovic, Dec 13 2002
Dirichlet g.f.: zeta(s)*zeta(2*s)/zeta(3*s). - Werner Schulte, Apr 03 2018
Sum_{k=1..n} a(k) ~ n*Pi^2/(6*zeta(3)) + sqrt(n)*zeta(1/2)/zeta(3/2). - Vaclav Kotesovec, Feb 07 2019
a(n) = 2^A162641(n). - Amiram Eldar, Sep 26 2022
a(n) = A034444(A350388(n)). - Amiram Eldar, Sep 09 2023

Extensions

More terms from Vladeta Jovovic, Dec 13 2002