cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056671 1 + the number of unitary and squarefree divisors of n = number of divisors of reduced squarefree part of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 1, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 4, 1, 2, 2, 8, 2, 1, 4, 4, 4, 1, 2, 4, 4, 2, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 1, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 1, 2, 8, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Note that 1 is regarded as free of squares of primes and is also a square number and a unitary divisor.

Examples

			n = 252 = 2*2*3*3*7 has 18 divisors, 8 unitary and 8 squarefree divisors of which 2 are unitary and squarefree, divisors {1,7};
n = 2520 = 2*2*2*3*3*5*7 has 48 divisors, 16 unitary and 16 squarefree divisors of which {1,5,7,35} are both, thus a(2520) = 4.
a(2520) = a(2^3*3^2*5*7) = a(2^3)*a(3^2)*a(5)*a(7) = 1*1*2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[0, #] &@ Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2] &, 105] (* or *)
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_,e_] := If[e==1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056671(n) = numdiv(A055231(n));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ This function from Charles R Greathouse IV, Nov 20 2012
    A056671(n) = numdiv(core(n)/A055229(n)); \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 2, 1), factor(n)[, 2])); \\ Amiram Eldar, Apr 15 2025
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod([2 if e==1 else 1 for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
  • Scheme
    (define (A056671 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 1) (A056671 (A028234 n))))) ;; (After the given multiplicative formula) - Antti Karttunen, Jul 19 2017
    

Formula

a(n) = A000005(A055231(n)) = A000005(A007913(n)/A055229(n)).
Multiplicative with a(p) = 2 and a(p^e) = 1 for e > 1. a(n) = 2^A056169(n). - Vladeta Jovovic, Nov 01 2001
a(n) = A034444(n) - A056674(n). - Antti Karttunen, Jul 19 2017
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), (with a product that converges for s=1).
Let f(s) = Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), then Sum_{k=1..n} a(k) ~ n * (f(1) * (log(n) + 2*gamma - 1) + f'(1)), where f(1) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} (4*p-3) * log(p) / (p^3 - 2*p + 1) = 0.808661108949590913395... and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n, gcd(d,n/d)=1} mu(d)^2. - Wesley Ivan Hurt, May 25 2023
a(n) = Sum_{d|n} A343443(d)*mu(n/d). - Ridouane Oudra, Dec 18 2023