cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084831 Numbers n such that sum of odd divisors and sum of even divisors are both palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 43, 81, 86, 162, 201, 205, 211, 221, 241, 251, 271, 281, 325, 333, 344, 365, 422, 433, 443, 463, 482, 489, 519, 559, 633, 650, 685, 730, 793, 803, 827, 857, 866, 877, 886, 887, 1419, 1505, 1841, 2021, 2111, 2221, 2305, 2441, 2551, 2561, 2611
Offset: 1

Views

Author

Jason Earls, Jun 05 2003

Keywords

Comments

Primes of form 2*10^n + R(n) (A056700) and 2/9*(-1+10^n)-1 (A084832) are members.

Examples

			a(11)=162 because sum of even divisors is 242 and sum of odd divisors is 121.
		

Crossrefs

Programs

  • Mathematica
    sodQ[n_]:=Module[{dn=Divisors[n],o,e},o=IntegerDigits[Total[Select[ dn,OddQ]]]; e=IntegerDigits[Total[Select[dn,EvenQ]]]; o== Reverse[o] && e==Reverse[e]]; Select[Range[3000],sodQ] (* Harvey P. Dale, Feb 27 2013 *)

A068814 Primes with a 2 followed by (possibly zero) 1's.

Original entry on oeis.org

2, 211, 2111, 2111111111111, 2111111111111111111, 211111111111111111111111, 2111111111111111111111111111111111111111111111111111111111, 211111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Amarnath Murthy, Mar 07 2002

Keywords

Comments

Primes of the form (19*10^n-1)/9.
The next term (a(9)) has 544 digits. Harvey P. Dale, Sep 28 2015

Crossrefs

Cf. A056700.

Programs

  • Mathematica
    Select[Table[FromDigits[Join[{2},PadRight[{},n,1]]],{n,0,130}],PrimeQ] (* Harvey P. Dale, Sep 28 2015 *)
  • PARI
    for(n=0,200, if(isprime(2*10^n+(10^(n)-1)/9)==1,print1(2*10^n+(10^(n)-1)/9,",")))

Formula

a(n) = (19*10^A056700(n)-1)/9.

Extensions

More terms from Benoit Cloitre, Mar 09 2002
Edited by Ray Chandler, Feb 03 2012
Showing 1-2 of 2 results.