A275431 Triangle read by rows: T(n,k) = number of ways to insert n pairs of parentheses in k words.
1, 2, 1, 5, 2, 1, 14, 8, 2, 1, 42, 24, 8, 2, 1, 132, 85, 28, 8, 2, 1, 429, 286, 100, 28, 8, 2, 1, 1430, 1008, 358, 105, 28, 8, 2, 1, 4862, 3536, 1309, 378, 105, 28, 8, 2, 1, 16796, 12618, 4772, 1410, 384, 105, 28, 8, 2, 1, 58786, 45220, 17556, 5220, 1435, 384, 105, 28, 8, 2, 1
Offset: 1
Examples
1 2 1 5 2 1 14 8 2 1 42 24 8 2 1 132 85 28 8 2 1 429 286 100 28 8 2 1 1430 1008 358 105 28 8 2 1 4862 3536 1309 378 105 28 8 2 1 16796 12618 4772 1410 384 105 28 8 2 1 58786 45220 17556 5220 1435 384 105 28 8 2 1
Links
Crossrefs
Programs
-
Maple
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)* binomial(C(i)+j-1, j), j=0..min(n/i, p))))) end: T:= (n, k)-> b(n$2, k): seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 13 2017
-
Mathematica
c[n_] := c[n] = Binomial[2*n, n]/(n + 1); b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[c[i] + j - 1, j], {j, 0, Min[n/i, p]}]]]]; T[n_, k_] := b[n, n, k]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 18 2018, after Alois P. Heinz *)
Formula
T(n,1) = A000108(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1
G.f.: Product_{j>=1} 1/(1-y*x^j)^A000108(j). - Alois P. Heinz, Apr 13 2017
A046342 Number of 3-bead necklaces where each bead is a planted trivalent plane tree [or anything else enumerated by the Catalan numbers], by total number of nodes.
1, 1, 3, 8, 24, 74, 245, 815, 2796, 9707, 34186, 121562, 436298, 1577310, 5740299, 21008777, 77279892, 285544700, 1059332082, 3944254118, 14734260864, 55207053787, 207421476390, 781283558998, 2949675307082, 11160264942376, 42309912978708, 160700303600030
Offset: 0
Keywords
Comments
With offset = 3, a(n) is the number of forests having exactly three rooted plane trees with n total nodes. - Geoffrey Critzer, Feb 22 2013
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nn=30;Drop[CoefficientList[Series[ CycleIndex[SymmetricGroup[3],s]/.Table[s[i]->(1-(1-4x^i)^(1/2))/2,{i,1,nn}],{x,0,nn}],x],3] (* Geoffrey Critzer, Feb 22 2013 *)
Formula
Plug g.f. for A000108, 1/2*(1-(1-4*x)^(1/2))/x, into cycle index for dihedral group D_6.
Cycle index for D_6: 1/6*Z[1]^3+1/2*Z[1]*Z[2]+1/3*Z[3].
a(n) = Sum_{j=0..3} A275431(n,j). - Alois P. Heinz, Sep 20 2017
Comments