cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056791 Weight of binary expansion of n + length of binary expansion of n.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 8, 7, 8, 8, 9, 7, 8, 8, 9, 8, 9, 9, 10, 7, 8, 8, 9, 8, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 11, 8, 9, 9, 10, 9, 10, 10, 11, 9, 10, 10, 11, 10, 11, 11, 12, 8, 9, 9, 10, 9, 10, 10, 11, 9, 10, 10, 11, 10, 11, 11, 12, 9, 10, 10, 11, 10, 11, 11
Offset: 0

Views

Author

N. J. A. Sloane, Sep 01 2000

Keywords

Examples

			12 = 1100 in binary, so a(12)=2+4=6.
		

Crossrefs

Equals A056792 + 1.
Equals A014701 + 2.

Programs

  • Mathematica
    Table[If[n==0,1,s=IntegerDigits[n,2];Total@s+Length@s],{n,0,100}] (* Giorgos Kalogeropoulos, Sep 13 2021 *)
  • PARI
    a(n) = if (n==0, 1, my(b=binary(n)); vecsum(b) + #b); \\ Michel Marcus, Sep 13 2021
    
  • Python
    def a(n): b = bin(n)[2:]; return b.count('1') + len(b)
    print([a(n) for n in range(87)]) # Michael S. Branicky, Sep 13 2021

Formula

a(n) = a((n - n mod 2) / (2 - n mod 2)) + 1 for n>0, a(0)=1. - Reinhard Zumkeller, Jul 29 2002
a(2n) = a(n)+1, a(2n+1) = a(n)+2. G.f.: 1 + 1/(1-x) * sum(k>=0, (2t+t^2)/(1+t), t=x^2^k). For n>0, a(n) = 2*A000120(n) + A080791(n) = A000120(n) + A029837(n). - Ralf Stephan, Jun 14 2003

Extensions

More terms from James Sellers, Sep 06 2000 and from David W. Wilson, Sep 07 2000