A056834 a(n) = floor(n^2/7).
0, 0, 0, 1, 2, 3, 5, 7, 9, 11, 14, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 69, 75, 82, 89, 96, 104, 112, 120, 128, 137, 146, 155, 165, 175, 185, 195, 206, 217, 228, 240, 252, 264, 276, 289, 302, 315, 329, 343, 357, 371, 386, 401, 416, 432, 448
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Programs
-
Mathematica
Floor[(Range[0,60]^2)/7] (* or *) LinearRecurrence[{2,-1,0,0,0,0,1,-2,1},{0,0,0,1,2,3,5,7,9},60] (* Harvey P. Dale, Jul 21 2014 *) CoefficientList[Series[-x^3 (1 + x) (x^2 - x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (x - 1)^3), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 22 2014 *)
-
PARI
a(n) = n^2\7; \\ Michel Marcus, Mar 03 2022
Formula
a(n) = +2*a(n-1) -a(n-2) +a(n-7) -2*a(n-8) +a(n-9).
G.f.: -x^3*(1+x)*(x^2-x+1) / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^3 ).