cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056889 Numerators of continued fraction for left factorial.

Original entry on oeis.org

0, 1, 1, 0, 1, -1, -2, 1, 2, -1, -3, 2, 9, -7, -40, 33, 224, -191, -1495, 1304, 11545, -10241, -101106, 90865, 989274, -898409, -10690043, 9791634, 126392833, -116601199, -1622625152, 1506023953, 22473758096, -20967734143, -333977722335, 313009988192, 5300202065121, -4987192076929
Offset: 0

Views

Author

Aleksandar Petojevic, Sep 05 2000

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<2 then return n;
        elif (n mod 2)=0 then return (n/2)*a(n-1) +a(n-2);
        else return -a(n-1) +a(n-2);
        fi; end;
    List([0..20], n-> a(n) ); # G. C. Greubel, Dec 05 2019
  • Maple
    a:= proc(n) option remember;
          if n<2 then n
        elif (n mod 2)=0 then (n/2)*a(n-1) +a(n-2)
        else -a(n-1) +a(n-2)
          fi; end:
    seq(a(n), n=0..40); # G. C. Greubel, Dec 05 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, n, If[EvenQ[n], (n/2)*a[n-1] +a[n-2], -a[n-1] +a[n-2]]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Dec 05 2019 *)
  • PARI
    a(n) = if(n<2, n, if(Mod(n,2)==0, (n/2)*a(n-1) +a(n-2), -a(n-1) +a(n-2) )); \\ G. C. Greubel, Dec 05 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return n
        elif (mod(n,2) ==0): return (n/2)*a(n-1) +a(n-2)
        else: return -a(n-1) +a(n-2)
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 05 2019
    

Formula

a(0) = 0; a(1) = 1; a(2*n) = n*a(2*n-1) + a(2*n-2); a(2*n+1) = -a(2*n) + a(2*n-1).
From Mark van Hoeij, Jul 15 2022: (Start)
a(2*n+1) = -(-1)^n * A058797(n-2).
a(2*n) = (-1)^n * (A058797(n-2) + A058797(n-3)). (End)

Extensions

More terms from James Sellers, Sep 06 2000 and from Larry Reeves (larryr(AT)acm.org), Sep 07 2000