A056914 a(n) = Lucas(4*n+1).
1, 11, 76, 521, 3571, 24476, 167761, 1149851, 7881196, 54018521, 370248451, 2537720636, 17393796001, 119218851371, 817138163596, 5600748293801, 38388099893011, 263115950957276, 1803423556807921, 12360848946698171
Offset: 0
References
- V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, A Publication of the Fibonacci Association, Houghton Mifflin Co., 1969, pp. 27-29.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (7,-1).
Crossrefs
Programs
-
GAP
List([0..30], n-> Lucas(1,-1,4*n+1)[2] ); # G. C. Greubel, Jan 16 2020
-
Magma
[Lucas(4*n+1): n in [0..30]]; // G. C. Greubel, Dec 24 2017
-
Maple
with(combinat); seq(fibonacci(4*n+2)+fibonacci(4*n), n = 0..30); # G. C. Greubel, Jan 16 2020
-
Mathematica
LucasL[4*Range[0,30]+1] (* or *) LinearRecurrence[{7,-1}, {1,11}, 30] (* G. C. Greubel, Dec 24 2017 *)
-
PARI
my(x='x+O('x^30)); Vec((1+4*x)/(1-7*x+x^2)) \\ G. C. Greubel, Dec 24 2017
-
Sage
[lucas_number2(4*n+1,1,-1) for n in (0..30)] # G. C. Greubel, Jan 16 2020
Formula
a(n) = 7*a(n-1) - a(n-2), with a(0)=1, a(1)=11.
a(n) = (11*(((7+3*sqrt(5))/2)^n - ((7-3*sqrt(5))/2)^n) - (((7+3*sqrt(5))/2)^(n-1) - ((7-3*sqrt(5))/2)^(n-1)))/3*sqrt(5).
G.f.: (1+4*x)/(1-7*x+x^2). - Philippe Deléham, Nov 02 2008
Comments