cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A208846 a(n) = A056915(n) mod 76057 mod 13.

Original entry on oeis.org

2, 7, 11, 10, 5, 9, 6, 3, 4, 0, 1, 12, 8, 8, 6, 10, 9, 6, 7, 10, 3, 6, 2, 9, 8, 1, 2, 2, 2, 8, 0, 5, 5, 2, 7, 11, 5, 2, 11, 0, 10, 8, 2, 7, 4, 10, 2, 0, 5, 12, 8, 11, 6, 7, 7, 11, 0, 5, 1, 12, 6, 4, 6, 7, 8, 1, 12, 0, 7, 2, 9
Offset: 1

Views

Author

Washington Bomfim, Mar 02 2012

Keywords

Comments

A056915(n) mod 76057 mod 13 is a bijection from the set of the first 13 terms of A056915 to {0,1,2,3,4,5,6,7,8,9,10,11,12}.
One of the tests for primality described in the first reference when tests x and x is prime, searches a table T composed by the first 13 entries of A056915 to see if x is a strong pseudoprime to bases 2,3 and 5. A fast way to do that is to compute i = x mod 76057 mod 13, and compare x with T[i]. If x is not equal to T[i], x is prime.
Terms computed using table by Charles R Greathouse IV. See A056915.

Crossrefs

Cf. A055775.

A208847 A056915(n) mod 5228905 mod 17.

Original entry on oeis.org

3, 4, 13, 15, 8, 14, 9, 5, 0, 11, 16, 10, 2, 12, 7, 1, 6, 16, 3, 10, 5, 8, 7, 16, 6, 11, 13, 6, 10, 6, 11, 16, 9, 1, 1, 15, 5, 1, 14, 7, 15, 2, 14, 9, 2, 6, 14, 3, 3, 14, 12, 6, 2, 4, 10, 16, 6, 10, 9, 3, 3, 1, 7, 9, 11, 5
Offset: 1

Views

Author

Washington Bomfim, Mar 02 2012

Keywords

Comments

A056915(n) mod 5228905 mod 17 is a bijection from the set of the first 17 terms of A056915 to {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}.
From an algorithm based on strong pseudoprimes to bases 2,3 and 5, and a table T with the first 17 terms of A056915, we can test if n is prime, odd n, 1 < n < 42550716781. When n is a prime, we check if n belongs to T. A fast way to do that is to compute i = n mod 5228905 mod 17 and compare n with T[i]. If n is not equal to T[i], n is prime.
Terms computed using table by Charles R Greathouse IV. See A056915.

Crossrefs

A001262 Strong pseudoprimes to base 2.

Original entry on oeis.org

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737
Offset: 1

Views

Author

Keywords

Comments

The number 2^k-1 is in the sequence iff k is in A054723 or in A001567. - Thomas Ordowski, Sep 02 2016
The number (2^k+1)/3 is in the sequence iff k is in A127956. - Davide Rotondo, Aug 13 2021

Examples

			From _Michael B. Porter_, Sep 04 2016: (Start)
For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence.
For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. (End)
		

References

  • R. K. Guy, Unsolved Problems Theory Numbers, A12.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.

Crossrefs

Cf. A001567 (pseudoprimes to base 2), A020229 (strong pseudoprimes to base 3), A020231 (base 5), A020233 (base 7).
Cf. A072276 (SPP to base 2 and 3), A215568 (SPP to base 2 and 5), A056915 (SPP to base 2,3 and 5), A074773 (SPP to base 2,3,5 and 7).

Programs

  • Maple
    A007814 := proc(n) padic[ordp](n,2) ; end proc:
    isStrongPsp := proc(n,b) local d,s,r; if type(n,'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d,n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d,n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:
    isA001262 := proc(n) isStrongPsp(n,2) ; end proc:
    for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:
    # R. J. Mathar, Apr 05 2011
  • Mathematica
    sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
  • PARI
    isStrongPsp(n,b)={
            my(s,d,r,bm) ;
            if( (n% 2) ==0 || n <=1, return(0) ;) ;
            if(isprime(n), return(0) ;) ;
            s = valuation(n-1,2) ;
            d = (n-1)/2^s ;
            bm = Mod(b,n)^d ;
            if ( bm == Mod(1,n), return(1) ;) ;
            for(r=0,s-1,
                    bm = Mod(b,n)^d ;
                    if ( bm == Mod(-1,n),
                            return(1) ;
                    ) ;
                    d *= 2;
            ) ;
            return(0);
    }
    isA001262(n)={
            isStrongPsp(n,2)
    }
    {
    for(n=1,10000000000,
        if(isA001262(n),
            print(n)
        ) ;
    ) ;
    } \\ R. J. Mathar, Mar 07 2012
    
  • PARI
    is_A001262(n,a=2)={ (bittest(n,0) && !isprime(n) && n>8) || return; my(s=valuation(n-1,2)); if(1==a=Mod(a,n)^(n>>s),return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012

Extensions

More terms from David W. Wilson, Aug 15 1996

A020229 Strong pseudoprimes to base 3.

Original entry on oeis.org

121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, 105163, 111361, 112141, 148417, 152551, 182527, 188191, 211411, 218791, 221761, 226801
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A020229 = {}; lst = {}; k = 3; While[k < 500000, If[sppQ[k, 3], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
  • PARI
    is_A020229(n,b=3)={ bittest(n,0) || return;ispseudoprime(n) && return;my(d=(n-1)>>valuation(n-1,2));Mod(b,n)^d==1 || until(n-1<=d*=2,Mod(b,n)^d+1 || return(1))} \\ M. F. Hasler, Jul 19 2012

A020231 Strong pseudoprimes to base 5.

Original entry on oeis.org

781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, 100651, 102311, 104721, 112141, 121463, 133141, 141361, 146611, 195313, 211951, 216457, 222301, 251521, 289081, 290629, 298271, 315121
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A005936, A001262 (base-2 SPP), A020229 (base-3 SPP), A215568 (SPP to bases 2 & 5), A215566 (SPP to bases 3 & 5), A056915 (SPP to bases 2, 3 & 5), A074773 (SPP to bases 2, 3, 5 & 7).

Programs

A074773 Strong pseudoprimes to bases 2, 3, 5 and 7.

Original entry on oeis.org

3215031751, 118670087467, 307768373641, 315962312077, 354864744877, 457453568161, 528929554561, 546348519181, 602248359169, 1362242655901, 1871186716981, 2152302898747, 2273312197621, 2366338900801, 3343433905957, 3461715915661, 3474749660383, 3477707481751, 4341937413061, 4777422165601, 5537838510751
Offset: 1

Views

Author

Don Reble, Sep 07 2002

Keywords

Crossrefs

Programs

  • PARI
    sprp(n,b)=my(s=valuation(n-1,2),d=Mod(b,n)^(n>>s)); if(d==1, return(1)); for(i=1,s-1, if(d==-1, return(1)); d=d^2;); d==-1
    is(n)=sprp(n,2) && sprp(n,3) && sprp(n,5) && sprp(n,7) && !isprime(n) \\ Charles R Greathouse IV, Sep 14 2015

Extensions

b-file, link, and editing from Charles R Greathouse IV, Aug 14 2010
Showing 1-6 of 6 results.