A209833
a(f(A074773(n))) = A074773(n); 1 <= n <= 9999; f: N -> {1..9999}.
Original entry on oeis.org
457453568161, 1362242655901, 2152302898747, 2273312197621, 4341937413061, 4777422165601, 11377272352951, 13112583010129, 23537786498641, 90022554326251, 92045875072861, 131175316104661
Offset: 1
a(1) = A074773(6) because f(A074773(6)) = 1. (With M = 16992, A074773(6) % 453359393 % M + 1 = 7185, and A074773(6)%450577199 % M + 1 = 7593. After running the first PARI program, one can type V[7185], and V[7593] to see that y=z = V[7185]= V[7593] = 0. So f(A074773(6)) = 1).
-
s=Str(read("C:/temp/V.txt"));x=Vec(s);n=0;M=16992;i=1;V=vector(M);k=0;s="";j=0;y=0;z=0;
for(n=1,M,k=i+1;s="";for(j=1,eval(x[i]),s=concat(s,x[k]);k++);V[n]=eval(s);i=k);
\\
f(x)={y=V[x%453359393%M+1]; z=V[x%450577199%M+1]; return((y<=z)*z + (y>z)*y +1);};
\\
print("Reading file C:/temp/A.txt. Please wait...");s=Str(read("C:/temp/A.txt")); x=Vec(s);i=1;p=vector(9999);
for(n=1,9999,k=i+2;s="";for(j=1,eval(concat(x[i],x[i+1])),s=concat(s,x[k]);k++); p[n]=eval(s);i=k);
print("");a=vector(9999); for(i=1,9999,a[f(p[i])]=p[i]);for(i=1,9999, print(i," ",a[i]))
A209834
a(A074773(n) mod 1519829 mod 18) = A074773(n), 1 <= n <= 18.
Original entry on oeis.org
3343433905957, 1871186716981, 307768373641, 546348519181, 1362242655901, 2273312197621, 354864744877, 3474749660383, 2366338900801, 602248359169, 3215031751, 2152302898747, 315962312077, 457453568161, 528929554561, 3477707481751, 118670087467, 3461715915661
Offset: 0
A074773(15) mod 1519829 mod 18 = 0, so a(0) = A074773(15).
A074773(11) mod 1519829 mod 18 = 1, so a(1) = A074773(11).
A211112
a(n) is the smallest pseudoprime q in A074773 such that f(q) = n, where f: N -> {1..63} is given below.
Original entry on oeis.org
39365185894561, 52657210792621, 11377272352951, 15070413782971, 3343433905957, 16603327018981, 3461715915661, 52384617784801, 3477707481751, 18996486073489, 55712149574381, 118670087467
Offset: 1
Because f(A074773(15)) = 5, a(5) = A074773(15).
-
f(x)={ f1=x % 20650997 % 63; f2=x % 13936751 % 63; v1=3521775543809890147;
v2 = 1700305497776372630; v3 = 4844350019353692337;
h1=(f1<=20)*((v1>>(3*f1))%8)+(f1>=42)*((v3>>(3*(f1-42)))%8)+(f1>20&&f1<42)*((v2>>(3*(f1-21)))%8);
h2=(f2<=20)*((v1>>(3*f2))%8)+(f2>=42)*((v3>>(3*(f2-42)))%8)+(f2>20&&f2<42)*((v2>>(3*(f2-21)))%8);
y = (h1==h2)*f2 + (h1>h2)*f1+(h2>h1)*f2 + 1; return (y);};
\\
s=Str(read("C:/temp/A074773.txt" )); x=Vec(s);n=0;k=0;j=0;i=1;p=vector(63); y=0;
for(n=1,63,k=i+2;s="";for(j=1,eval(concat(x[i],x[i+1])),s=concat(s,x[k]);k++); p[n]=eval(s);i=k);
a=vector(63); for(i=1,63, y =f(p[i]); a[y]=p[i]); for(i=1,63, print(i," ",a[i]));
A001262
Strong pseudoprimes to base 2.
Original entry on oeis.org
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751, 104653, 130561, 196093, 220729, 233017, 252601, 253241, 256999, 271951, 280601, 314821, 357761, 390937, 458989, 476971, 486737
Offset: 1
From _Michael B. Porter_, Sep 04 2016: (Start)
For k = 577, k-1 = 576 = 9*2^6. Since 2^(9*2^3) = 2^72 == -1 (mod 577), 577 passes the primality test, but since it is actually prime, it is not in the sequence.
For k = 3277, k-1 = 3276 = 819*2^2, and 2^(819*2) == -1 (mod 3277), so k passes the primality test, and k = 3277 = 29*113 is composite, so 3277 is in the sequence. (End)
- R. K. Guy, Unsolved Problems Theory Numbers, A12.
- P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 95.
-
A007814 := proc(n) padic[ordp](n,2) ; end proc:
isStrongPsp := proc(n,b) local d,s,r; if type(n,'even') or n<=1 then return false; elif isprime(n) then return false; else s := A007814(n-1) ; d := (n-1)/2^s ; if modp(b &^ d,n) = 1 then return true; else for r from 0 to s-1 do if modp(b &^ d,n) = n-1 then return true; end if; d := 2*d ; end do: return false; end if; end if; end proc:
isA001262 := proc(n) isStrongPsp(n,2) ; end proc:
for n from 1 by 2 do if isA001262(n) then print(n); end if; end do:
# R. J. Mathar, Apr 05 2011
-
sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d, n] == n-1, Return[True]]; d = 2*d, {s}]]); lst = {}; k = 3; While[k < 500000, If[sppQ[k, 2], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
-
isStrongPsp(n,b)={
my(s,d,r,bm) ;
if( (n% 2) ==0 || n <=1, return(0) ;) ;
if(isprime(n), return(0) ;) ;
s = valuation(n-1,2) ;
d = (n-1)/2^s ;
bm = Mod(b,n)^d ;
if ( bm == Mod(1,n), return(1) ;) ;
for(r=0,s-1,
bm = Mod(b,n)^d ;
if ( bm == Mod(-1,n),
return(1) ;
) ;
d *= 2;
) ;
return(0);
}
isA001262(n)={
isStrongPsp(n,2)
}
{
for(n=1,10000000000,
if(isA001262(n),
print(n)
) ;
) ;
} \\ R. J. Mathar, Mar 07 2012
-
is_A001262(n,a=2)={ (bittest(n,0) && !isprime(n) && n>8) || return; my(s=valuation(n-1,2)); if(1==a=Mod(a,n)^(n>>s),return(1)); while(a!=-1 && s--, a=a^2); a==-1} \\ M. F. Hasler, Aug 16 2012
A020229
Strong pseudoprimes to base 3.
Original entry on oeis.org
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, 74593, 79003, 82513, 87913, 88573, 97567, 105163, 111361, 112141, 148417, 152551, 182527, 188191, 211411, 218791, 221761, 226801
Offset: 1
-
sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A020229 = {}; lst = {}; k = 3; While[k < 500000, If[sppQ[k, 3], Print[k]; AppendTo[lst, k]]; k += 2]; lst (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
-
is_A020229(n,b=3)={ bittest(n,0) || return;ispseudoprime(n) && return;my(d=(n-1)>>valuation(n-1,2));Mod(b,n)^d==1 || until(n-1<=d*=2,Mod(b,n)^d+1 || return(1))} \\ M. F. Hasler, Jul 19 2012
A020231
Strong pseudoprimes to base 5.
Original entry on oeis.org
781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501, 44801, 53971, 79381, 100651, 102311, 104721, 112141, 121463, 133141, 141361, 146611, 195313, 211951, 216457, 222301, 251521, 289081, 290629, 298271, 315121
Offset: 1
-
nmax = 400000; sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := (s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[ PowerMod[b, d, n] == 1, Return[True], Do[If[PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s - 1}]]); A020231 = {}; n = 1; While[n < nmax, n = n+2; If[sppQ[n, 5] == True, Print[n]; AppendTo[A020231, n]]]; A020231 (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
A056915
Strong pseudoprimes to bases 2, 3 and 5, i.e., intersection of A001262, A020229, and A020231.
Original entry on oeis.org
25326001, 161304001, 960946321, 1157839381, 3215031751, 3697278427, 5764643587, 6770862367, 14386156093, 15579919981, 18459366157, 19887974881, 21276028621, 27716349961, 29118033181, 37131467521, 41752650241, 42550716781, 43536545821
Offset: 1
- P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, NY, 1991, pp. 82-83.
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Pomerance, C., Selfridge, J.L. and Wagstaff, Jr., S.S. The pseudoprimes to 25*10^9, Mathematics of Computation 35, 1980, pp. 1003-1026.
- Eric Weisstein's World of Mathematics, Strong Pseudoprime
- Index entries for sequences related to pseudoprimes
A188755
Strong pseudoprimes to bases 11, 13 and 17.
Original entry on oeis.org
10267951, 38248981, 39547171, 54637831, 123771511, 264350521, 284166877, 317712877, 585281791, 842220289, 1480849831, 2144961253, 2385076987, 3256366051, 3363763231, 3383477191, 3637831753, 4042578403, 5541525331
Offset: 1
A210588
Twenty-seven smaller strong pseudoprimes to bases 2,3,5,7 arranged in order given by a function f:N->{1..27}.
Original entry on oeis.org
6597606223981, 3474749660383, 5792018372251, 307768373641, 3477707481751, 1362242655901, 3461715915661, 4341937413061, 5537838510751, 10710604680091, 2273312197621, 602248359169, 10087771603687, 3343433905957, 2366338900801, 8006855187361, 457453568161, 11377272352951, 118670087467, 354864744877, 2152302898747, 528929554561, 546348519181, 315962312077, 3215031751, 4777422165601, 1871186716981
Offset: 1
A074773(1) appears in the 25th place because f(A074773(1)) = 25.
-
f(x)={f1 = x % 24729742 % 27; f2 = x % 24729769 % 27; h1 = 164352 >> f1 % 2;
h2=164352 >> f2 % 2; return((h1==h2)*f1 + (h1>h2)*f1+(h2>h1)*f2 + 1); };
p1=[3215031751,118670087467,307768373641,315962312077,354864744877,457453568161];
p2=[528929554561,546348519181,602248359169,1362242655901,1871186716981,2152302898747];
p3=[2273312197621,2366338900801,3343433905957,3461715915661,3474749660383];
p4=[3477707481751,4341937413061,4777422165601,5537838510751,5792018372251];
p5=[6597606223981,8006855187361,10087771603687,10710604680091,11377272352951];
a=vector(27); for(i=1,6, a[f(p1[i])] = p1[i]); for(i=1,6, a[f(p2[i])] = p2[i]);
for(i=1,5, a[f(p3[i])] = p3[i]); for(i=1,5, a[f(p4[i])] = p4[i]);
for(i=1,5, a[f(p5[i])] = p5[i]); for(i=1,27, print1(a[i],", "));
A209395
Strong pseudoprimes to bases 19, 23 and 29.
Original entry on oeis.org
4224533, 5903497, 16462297, 22028203, 44068001, 336273211, 1067437801, 1813073653, 1876485691, 1894909141, 2072488771, 2458231903, 2791053541, 2827961221, 3733646491, 4333572253
Offset: 1
Showing 1-10 of 10 results.
Comments