cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516, 16818516, 3737448, 169884, 1287, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">5; cf. A342889. - _N. J. A. Sloane, Apr 03 2021

Examples

			The array starts:
  [1    1      1        1          1           1            1 ...]
  [1    6     21       56        126         252          462 ...]
  [1   21    196     1176       5292       19404        60984 ...]
  [1   56   1176    14112     116424      731808      3737448 ...]
  [1  126   5292   116424    1646568    16818516    133613766 ...]
  [1  252  19404   731808   16818516   267227532   3184461423 ...]
  [1  462  60984  3737448  133613766  3184461423  55197331332 ...]
  [...]
Considered as a triangle, the initial rows are:
   1;
   1,   1;
   1,   6,     1;
   1,  21,    21,      1;
   1,  56,   196,     56,       1;
   1, 126,  1176,   1176,     126,      1;
   1, 252,  5292,  14112,    5292,    252,     1;
   1, 462, 19404, 116424,  116424,  19404,   462,   1;
   1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
  • P. A. MacMahon, Combinatory Analysis, Section 495, 1916.
  • R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

Crossrefs

Antidiagonals sum to A005363 (Hoggatt sequence).
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Magma
    A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >;
    [A056941(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 14 2022
    
  • Mathematica
    T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,4}];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 14 2022 *)
  • PARI
    A056941(n,m)=prod(k=0,4,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ as an array \\ M. F. Hasler, Sep 26 2018
    
  • SageMath
    def A056941(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..4))
    flatten([[A056941(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 14 2022

Formula

From Peter Bala, Oct 13 2011: (Start)
A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.
g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
From Peter Bala, May 10 2012: (Start)
Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).
Also determinants of 5 X 5 arrays whose entries come from a single row:
det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)
From G. C. Greubel, Nov 14 2022: (Start)
T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).
Sum_{k=0..n} T(n, k) = A005363(n). (End)

Extensions

Edited by M. F. Hasler, Sep 26 2018