A056941 Number of antichains (or order ideals) in the poset 5*m*n or plane partitions with not more than m rows, n columns and entries <= 5.
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 56, 196, 56, 1, 1, 126, 1176, 1176, 126, 1, 1, 252, 5292, 14112, 5292, 252, 1, 1, 462, 19404, 116424, 116424, 19404, 462, 1, 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1, 1, 1287, 169884, 3737448, 16818516, 16818516, 3737448, 169884, 1287, 1
Offset: 0
Examples
The array starts: [1 1 1 1 1 1 1 ...] [1 6 21 56 126 252 462 ...] [1 21 196 1176 5292 19404 60984 ...] [1 56 1176 14112 116424 731808 3737448 ...] [1 126 5292 116424 1646568 16818516 133613766 ...] [1 252 19404 731808 16818516 267227532 3184461423 ...] [1 462 60984 3737448 133613766 3184461423 55197331332 ...] [...] Considered as a triangle, the initial rows are: 1; 1, 1; 1, 6, 1; 1, 21, 21, 1; 1, 56, 196, 56, 1; 1, 126, 1176, 1176, 126, 1; 1, 252, 5292, 14112, 5292, 252, 1; 1, 462, 19404, 116424, 116424, 19404, 462, 1; 1, 792, 60984, 731808, 1646568, 731808, 60984, 792, 1; ...
References
- Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124
- P. A. MacMahon, Combinatory Analysis, Section 495, 1916.
- R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1
Links
- Seiichi Manyama, Rows n = 0..139 of triangle, flattened
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
- P. A. MacMahon, Combinatory analysis.
- Index entries for sequences related to posets
Crossrefs
Antidiagonals sum to A005363 (Hoggatt sequence).
Programs
-
Magma
A056941:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..4]]) >; [A056941(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 14 2022
-
Mathematica
T[n_, k_] := Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,4}]; Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 14 2022 *)
-
PARI
A056941(n,m)=prod(k=0,4,binomial(n+m+k,m+k)/binomial(n+k,k)) \\ as an array \\ M. F. Hasler, Sep 26 2018
-
SageMath
def A056941(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..4)) flatten([[A056941(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 14 2022
Formula
From Peter Bala, Oct 13 2011: (Start)
A(n, k) = Product_{j=0..4} C(n+k+j, k+j)/C(n+j, j) gives the array as a square.
g(n-1, k-1)*g(n, k+1)*g(n+1, k) = g(n-1, k)*g(n, k-1)*g(n+1, k+1) where g(n, k) is the array A(n, k) and triangle T(n, k).
Define f(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is f(r,0)*f(r,n)/(f(r,k)*f(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)
From Peter Bala, May 10 2012: (Start)
Determinants of 5 X 5 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present).
Also determinants of 5 X 5 arrays whose entries come from a single row:
det [C(n,k), C(n,k-1), C(n,k-2), C(n,k-3), C(n,k-4); C(n,k+1), C(n,k), C(n,k-1), C(n,k-2), C(n,k-3); C(n,k+2), C(n,k+1), C(n,k), C(n,k-1), C(n,k-2); C(n,k+3), C(n,k+2), C(n,k+1), C(n,k), C(n,k-1); C(n,k+4), C(n,k+3), C(n,k+2), C(n,k+1), C(n,k)]. (End)
From G. C. Greubel, Nov 14 2022: (Start)
T(n, k) = Product_{j=0..4} binomial(n+j, k)/binomial(k+j, k) (gives the triangle).
Sum_{k=0..n} T(n, k) = A005363(n). (End)
Extensions
Edited by M. F. Hasler, Sep 26 2018
Comments