A057029 Central column of arrays in A057027 and A057028.
1, 6, 12, 27, 39, 64, 82, 117, 141, 186, 216, 271, 307, 372, 414, 489, 537, 622, 676, 771, 831, 936, 1002, 1117, 1189, 1314, 1392, 1527, 1611, 1756, 1846, 2001, 2097, 2262, 2364, 2539, 2647, 2832, 2946, 3141, 3261, 3466, 3592, 3807, 3939, 4164, 4302, 4537
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(5-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4 : n in [1..80]]; // Wesley Ivan Hurt, Jul 03 2016
-
Maple
A057029:=n->(5-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: seq(A057029(n), n=1..80); # Wesley Ivan Hurt, Jul 03 2016
-
Mathematica
Table[(5 - (-1)^n + 2 (-4 + (-1)^n) n + 8 n^2)/4, {n, 49}] (* or *) Table[If[OddQ@ n, Binomial[2 n - 1, 2] + (n + 1)/2 , Binomial[2 n, 2] - (n - 2)/2], {n, 49}] (* or *) Rest@ CoefficientList[Series[x (1 + 5 x + 4 x^2 + 5 x^3 + x^4)/((1 - x)^3 (1 + x)^2), {x, 0, 49}], x] (* Michael De Vlieger, Jul 03 2016 *)
-
PARI
Vec(x*(1+5*x+4*x^2+5*x^3+x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jul 02 2016
Formula
a(n) = C(2n-1, 2)+(n+1)/2 if n is odd, else a(n) = C(2n, 2)-(n-2)/2.
From Colin Barker, Jul 02 2016: (Start)
a(n) = (5-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4.
a(n) = (4*n^2-3*n+2)/2 for n even, a(n) = (4*n^2-5*n+3)/2 for n odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: x*(1+5*x+4*x^2+5*x^3+x^4) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: ((2 - x + 4*x^2)*cosh(x) + (3 + x + 4*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Sep 10 2024