cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057027 Triangle T read by rows: row n consists of the numbers C(n,2)+1 to C(n+1,2); numbers in odd-numbered places form an increasing sequence and the others a decreasing sequence.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 10, 8, 9, 11, 15, 12, 14, 13, 16, 21, 17, 20, 18, 19, 22, 28, 23, 27, 24, 26, 25, 29, 36, 30, 35, 31, 34, 32, 33, 37, 45, 38, 44, 39, 43, 40, 42, 41, 46, 55, 47, 54, 48, 53, 49, 52, 50, 51, 56, 66, 57, 65, 58, 64, 59, 63, 60, 62, 61, 67, 78, 68, 77, 69, 76
Offset: 1

Views

Author

Clark Kimberling, Jul 28 2000

Keywords

Comments

Arrange the quotients F(i)/F(j) of Fibonacci numbers, for 2<=i

Examples

			For n=6, the ordered quotients are 1/8, 1/5, 2/8, 1/3, 3/8, 2/5, 1/2, 3/5, 5/8, 2/3; the positions of 1/5, 2/5, 3/5 are 2, 6, 8 (first terms of diagonal T(i, i-1)).
Triangle starts:
  1;
  2, 3;
  4, 6, 5;
  7,10, 8, 9;
  ...
		

Crossrefs

Reflection of the array in A057028 about its central column, a permutation of the natural numbers.
Inverse permutation to A064578. Central column: A057029.
Column 1 is A000124, column 2 is A000217.
Row sums are A006003.

Programs

  • Mathematica
    nn= 12; t = Table[Range[Binomial[n, 2] + 1, Binomial[n + 1, 2]], {n, nn}]; Table[t[[n, If[OddQ@ k, Ceiling[k/2], -k/2] ]], {n, nn}, {k, n}] // Flatten (* Michael De Vlieger, Jul 02 2016 *)

Formula

From Werner Schulte, Sep 09 2024: (Start)
T(n, k) = (n^2 + (-1)^k * (n - k) + (3 + (-1)^k) / 2) / 2.
T(n, 1) = (n^2 - n + 2) / 2 = A000124(n).
T(n, 2) = (n^2 + n) / 2 = A000217(n) for n >= 2.
T(n, k) = T(n, k-2) - (-1)^k for 3 <= k <= n. (End)
G.f.: x*y*(1 + x*(y - 1) - x^4*(y - 1)*y^2 + x^5*y^3 + x^3*y*(y^2 - y - 1) - x^2*(y^2 + y - 1))/((1 - x)^3*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Sep 10 2024

Extensions

Corrected and extended by Vladeta Jovovic, Oct 18 2001

A274681 Numbers k such that 4*k + 1 is a triangular number.

Original entry on oeis.org

0, 5, 11, 26, 38, 63, 81, 116, 140, 185, 215, 270, 306, 371, 413, 488, 536, 621, 675, 770, 830, 935, 1001, 1116, 1188, 1313, 1391, 1526, 1610, 1755, 1845, 2000, 2096, 2261, 2363, 2538, 2646, 2831, 2945, 3140, 3260, 3465, 3591, 3806, 3938, 4163, 4301, 4536
Offset: 1

Author

Colin Barker, Jul 02 2016

Keywords

Comments

Also, numbers of the form m*(8*m + 3) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Examples

			5 is in the sequence since 4*5 + 1 = 21 is a triangular number (21 = 1 + 2 + 3 + 4 + 5 + 6). - _Michael B. Porter_, Jul 03 2016
		

Crossrefs

Cf. A000217, A000096 (n+1), A074377 (2*n+1), A045943 (3*n+1), A085787 (5*n+1).
Cf. A057029.
Cf. similar sequences listed in A299645.

Programs

  • Magma
    [(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: n in [1..80]]; // Wesley Ivan Hurt, Jul 02 2016
    
  • Maple
    A274681:=n->(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: seq(A274681(n), n=1..100); # Wesley Ivan Hurt, Jul 02 2016
  • Mathematica
    Rest@ CoefficientList[Series[x^2 (5 + 6 x + 5 x^2)/((1 - x)^3 (1 + x)^2), {x, 0, 48}], x] (* Michael De Vlieger, Jul 02 2016 *)
    Select[Range[0,5000],OddQ[Sqrt[8(4#+1)+1]]&] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,5,11,26,38},50] (* Harvey P. Dale, Apr 21 2018 *)
  • PARI
    isok(n) = ispolygonal(4*n+1, 3)
    
  • PARI
    select(n->ispolygonal(4*n+1, 3), vector(10000, n, n-1))
    
  • PARI
    concat(0, Vec(x^2*(5+6*x+5*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))
    
  • Python
    def A274681(n): return (n>>1)*((n<<2)+(-1 if n&1 else -3)) # Chai Wah Wu, Mar 11 2025

Formula

G.f.: x^2*(5 + 6*x + 5*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = A057029(n) - 1.
a(n) = (1 - (-1)^n + 2*(-4 + (-1)^n)*n + 8*n^2)/4.
a(n) = (4*n^2 - 3*n)/2 for n even, a(n) = (4*n^2 - 5*n + 1)/2 for n odd.

A236267 a(n) = 8*n^2 + 3*n + 1.

Original entry on oeis.org

1, 12, 39, 82, 141, 216, 307, 414, 537, 676, 831, 1002, 1189, 1392, 1611, 1846, 2097, 2364, 2647, 2946, 3261, 3592, 3939, 4302, 4681, 5076, 5487, 5914, 6357, 6816, 7291, 7782, 8289, 8812, 9351, 9906, 10477, 11064, 11667, 12286, 12921, 13572, 14239, 14922, 15621, 16336
Offset: 0

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]

Examples

			For n=5, A000384(a(5)) = 93096 = A000384(a(5)-1) + A000384(4*5+1) = 92235 + 861.
		

Crossrefs

Programs

  • Magma
    [8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
  • Mathematica
    Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *)
    LinearRecurrence[{3,-3,1},{1,12,39},50] (* Harvey P. Dale, May 26 2019 *)
  • PARI
    Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
    

Formula

From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024

Extensions

More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024

A373900 a(n) is the permanent of the n X n matrix M(n) whose generic element is given by M_{i,j} = A057027(i+j-1,j) with i,j in [n].

Original entry on oeis.org

1, 1, 12, 540, 75872, 20955144, 11384126656, 9651484407168, 13211097362836992, 25194877206154652160, 69640283454545443829760, 250781830072455488420118528, 1222842630390899923255269335040, 7431235824692236144506864480645120, 58351873068720341047993109561429852160
Offset: 0

Author

Stefano Spezia, Sep 10 2024

Keywords

Comments

The matrix M(n) is singular for n = 2 and n > 3.

Examples

			a(4) = 75872:
  [1,  3,  5,  9]
  [2,  6,  8, 14]
  [4, 10, 12, 20]
  [7, 15, 17, 27]
		

Crossrefs

Programs

  • Mathematica
    A057027[n_, k_]:=(n^2 + (-1)^k*(n - k) + (3 + (-1)^k)/2)/2; a[n_]:=Permanent[Table[A057027[i+j-1,j],{i,n},{j,n}]]; Join[{1},Array[a,14]]
Showing 1-4 of 4 results.