A057027 Triangle T read by rows: row n consists of the numbers C(n,2)+1 to C(n+1,2); numbers in odd-numbered places form an increasing sequence and the others a decreasing sequence.
1, 2, 3, 4, 6, 5, 7, 10, 8, 9, 11, 15, 12, 14, 13, 16, 21, 17, 20, 18, 19, 22, 28, 23, 27, 24, 26, 25, 29, 36, 30, 35, 31, 34, 32, 33, 37, 45, 38, 44, 39, 43, 40, 42, 41, 46, 55, 47, 54, 48, 53, 49, 52, 50, 51, 56, 66, 57, 65, 58, 64, 59, 63, 60, 62, 61, 67, 78, 68, 77, 69, 76
Offset: 1
A274681 Numbers k such that 4*k + 1 is a triangular number.
0, 5, 11, 26, 38, 63, 81, 116, 140, 185, 215, 270, 306, 371, 413, 488, 536, 621, 675, 770, 830, 935, 1001, 1116, 1188, 1313, 1391, 1526, 1610, 1755, 1845, 2000, 2096, 2261, 2363, 2538, 2646, 2831, 2945, 3140, 3260, 3465, 3591, 3806, 3938, 4163, 4301, 4536
Offset: 1
Comments
Also, numbers of the form m*(8*m + 3) for m = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018
Examples
5 is in the sequence since 4*5 + 1 = 21 is a triangular number (21 = 1 + 2 + 3 + 4 + 5 + 6). - _Michael B. Porter_, Jul 03 2016
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: n in [1..80]]; // Wesley Ivan Hurt, Jul 02 2016
-
Maple
A274681:=n->(1-(-1)^n+2*(-4+(-1)^n)*n+8*n^2)/4: seq(A274681(n), n=1..100); # Wesley Ivan Hurt, Jul 02 2016
-
Mathematica
Rest@ CoefficientList[Series[x^2 (5 + 6 x + 5 x^2)/((1 - x)^3 (1 + x)^2), {x, 0, 48}], x] (* Michael De Vlieger, Jul 02 2016 *) Select[Range[0,5000],OddQ[Sqrt[8(4#+1)+1]]&] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,5,11,26,38},50] (* Harvey P. Dale, Apr 21 2018 *)
-
PARI
isok(n) = ispolygonal(4*n+1, 3)
-
PARI
select(n->ispolygonal(4*n+1, 3), vector(10000, n, n-1))
-
PARI
concat(0, Vec(x^2*(5+6*x+5*x^2)/((1-x)^3*(1+x)^2) + O(x^100)))
-
Python
def A274681(n): return (n>>1)*((n<<2)+(-1 if n&1 else -3)) # Chai Wah Wu, Mar 11 2025
Formula
G.f.: x^2*(5 + 6*x + 5*x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = A057029(n) - 1.
a(n) = (1 - (-1)^n + 2*(-4 + (-1)^n)*n + 8*n^2)/4.
a(n) = (4*n^2 - 3*n)/2 for n even, a(n) = (4*n^2 - 5*n + 1)/2 for n odd.
A236267 a(n) = 8*n^2 + 3*n + 1.
1, 12, 39, 82, 141, 216, 307, 414, 537, 676, 831, 1002, 1189, 1392, 1611, 1846, 2097, 2364, 2647, 2946, 3261, 3592, 3939, 4302, 4681, 5076, 5487, 5914, 6357, 6816, 7291, 7782, 8289, 8812, 9351, 9906, 10477, 11064, 11667, 12286, 12921, 13572, 14239, 14922, 15621, 16336
Offset: 0
Comments
Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]
Examples
For n=5, A000384(a(5)) = 93096 = A000384(a(5)-1) + A000384(4*5+1) = 92235 + 861.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
-
Mathematica
Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *) LinearRecurrence[{3,-3,1},{1,12,39},50] (* Harvey P. Dale, May 26 2019 *)
-
PARI
Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
Formula
From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024
Extensions
More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024
A373900 a(n) is the permanent of the n X n matrix M(n) whose generic element is given by M_{i,j} = A057027(i+j-1,j) with i,j in [n].
1, 1, 12, 540, 75872, 20955144, 11384126656, 9651484407168, 13211097362836992, 25194877206154652160, 69640283454545443829760, 250781830072455488420118528, 1222842630390899923255269335040, 7431235824692236144506864480645120, 58351873068720341047993109561429852160
Offset: 0
Keywords
Comments
The matrix M(n) is singular for n = 2 and n > 3.
Examples
a(4) = 75872: [1, 3, 5, 9] [2, 6, 8, 14] [4, 10, 12, 20] [7, 15, 17, 27]
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula
Extensions