cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059870 Numbers n such that there exist no palindromic octagonal numbers of length n.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 15, 17, 18, 20, 22, 23, 26, 31, 34
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Crossrefs

Extensions

a(13)-a(17) from World!Of Numbers link entered by Michel Marcus, Mar 04 2014

A057106 Numbers k such that k(3k-2) is an octagonal palindrome.

Original entry on oeis.org

0, 1, 2, 52, 6331, 6431, 7341, 7863, 426115, 453486, 1054067, 1054167, 1472746, 2017631, 42687015, 1050553507, 13175129925, 335038979077, 1400295262095, 5847307263801, 51722791547842, 78849864240621, 105802560494387
Offset: 1

Views

Author

Patrick De Geest, Aug 15 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 10^5], PalindromeQ[PolygonalNumber[8, #]] &] (* Robert Price, Apr 29 2019 *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 17 2008
a(1)=0 added by Robert Price, Apr 29 2019

A307801 Number of palindromic octagonal numbers with exactly n digits.

Original entry on oeis.org

3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 2, 3, 1, 0, 1, 0, 0, 1, 0
Offset: 1

Views

Author

Robert Price, Apr 29 2019

Keywords

Comments

Number of terms in A057107 with exactly n digits.

Examples

			There is only one 4 digit octagonal number that is palindromic, 8008.  Thus, a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    A057107 = {0, 1, 8, 8008, 120232021, 124060421, 161656161, 185464581, 544721127445, 616947749616, 3333169613333, 3333802083333, 6506939396056, 12212500521221, 5466543663456645, 3310988011108890133, 520752145595541257025, 336753352502205253357633, 5882480463134313640842885, 102573006711888117600375201, 8025741496504444056941475208, 18651903272292929227230915681, 33582545421505050512454528533}; Table[Length[Select[A054910, IntegerLength[#] == n || (n == 1 && # == 0) &]], {n, 20}] (* Robert Price, Apr 29 2019 *)

A307802 Number of palindromic octagonal numbers of length n whose index is also palindromic.

Original entry on oeis.org

3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Robert Price, Apr 29 2019

Keywords

Comments

Is there a nonzero term beyond a(1)?

Examples

			There are only three palindromic octagonal numbers of length 1 whose index is also palindromic, 0->0, 1->1, and 2->8. Thus, a(1)=3.
		

Crossrefs

Programs

  • Mathematica
    A057107 = {0, 1, 8, 8008, 120232021, 124060421, 161656161, 185464581, 544721127445, 616947749616, 3333169613333, 3333802083333, 6506939396056, 12212500521221, 5466543663456645, 3310988011108890133, 520752145595541257025, 336753352502205253357633, 5882480463134313640842885, 102573006711888117600375201, 8025741496504444056941475208, 18651903272292929227230915681, 33582545421505050512454528533};
    A057106 = {0, 1, 2, 52, 6331, 6431, 7341, 7863, 426115, 453486, 1054067, 1054167, 1472746, 2017631, 42687015, 1050553507, 13175129925, 335038979077, 1400295262095, 5847307263801, 51722791547842, 78849864240621, 105802560494387};
    Table[Length[Select[A057106[[Table[Select[Range[20], IntegerLength[A057107[[#]]] ==  n || (n == 1 && A057107[[#]] == 0) &], {n, 20}][[n]]]], PalindromeQ[#] &]], {n, 20}]
Showing 1-4 of 4 results.