A057138 Add (n mod 10)*10^(n-1) to the previous term, with a(0) = 0.
0, 1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 987654321, 10987654321, 210987654321, 3210987654321, 43210987654321, 543210987654321, 6543210987654321, 76543210987654321, 876543210987654321
Offset: 0
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
ListTools:-PartialSums([seq((k mod 10)*10^(k-1), k=0..40)]); # Robert Israel, Jun 21 2017
-
Mathematica
Join[{c = 0}, Table[c = c + Mod[n, 10]*10^(n - 1), {n, 18}]] (* T. D. Noe, Jan 30 2013 *) nxt[{n_,a_}]:={n+1,a+Mod[n+1,10]10^n}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Apr 06 2025 *)
-
PARI
a(n)=sum(i=0,n,i%10*10^(i-1)) \\ M. F. Hasler, Jan 13 2013
Formula
a(n) = a(n-1) + 10^(n-1)*n - 10^n*floor(n/10) = A057139(n) mod 10^n.
a(n) = floor(((q/(10^10 - 1)) + q mod 10^(n mod 10))*10^(10*floor(n/10))), where q = 987654321. - Hieronymus Fischer, Jan 03 2013
G.f.: x(1-10(10x)^9 + 9(10x)^10)/((1-x) (1-10x)^2 (1-(10x)^10)). - Robert Israel, Jun 21 2017
Extensions
Better definition from M. F. Hasler, Jan 13 2013
Comments