cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A104759 Concatenation of digits of natural numbers from n down to 1.

Original entry on oeis.org

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 1987654321, 1987654321, 101987654321, 1101987654321, 11101987654321, 211101987654321, 1211101987654321, 31211101987654321, 131211101987654321, 4131211101987654321, 14131211101987654321, 514131211101987654321
Offset: 1

Views

Author

Alexandre Wajnberg & Juliette Bruyndonckx, Apr 23 2005

Keywords

Examples

			a(11) = a(10) because no number may begin with 0.
a(9)= [123456789]101112131415...=987654321
a(10)=[1234567891]01112131415...=1987654321
a(11)=[12345678910]1112131415...=01987654321=1987654321
a(12)=[123456789101]112131415...=101987654321
a(13)=[1234567891011]12131415...=1101987654321
a(14)=[12345678910111]2131415...=11101987654321
a(15)=[123456789101112]131415...=211101987654321
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{t = Reverse@ Flatten@ IntegerDigits@ Range@ n, k}, Reap@ For[k = 1, k <= Length@ t, k++, Sow[FromDigits@ Take[t, -k]]] // Flatten // Rest]; f@ 14 (* Michael De Vlieger, Mar 23 2015 *)
    lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, 100}]; Table[FromDigits[Reverse[lst[[Range[1, n]]]]], {n, 1, Length[lst]}] (* Robert Price, Mar 24 2015 *)

Formula

a(n) = A138793(n) mod 10^(n-1). - R. J. Mathar, Sep 17 2011

A057137 Concatenate next digit at right hand end (where the next digit after 9 is again 0).

Original entry on oeis.org

0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Comments

Also called the triangle of the gods (see Pickover link).
See A037610 for a general formula. - Hieronymus Fischer, Jan 03 2013

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.

Crossrefs

Alternative progression for n >= 10 compared with A007908 and A014824.
Cf. A057138 for reverse. Cf. A010879 (decimal digits).
For primes see A120819.

Programs

Formula

a(n) = 10*(a(n-1)-floor[n/10]) + n = floor[A057139(n)/10^(n-1)].
a(n) = floor((137174210/1111111111)*10^n). - Hieronymus Fischer, Jan 03 2013, corrected by M. F. Hasler, Jan 13 2013

A057139 Odd number of digits palindrome based on sequential digits.

Original entry on oeis.org

1, 121, 12321, 1234321, 123454321, 12345654321, 1234567654321, 123456787654321, 12345678987654321, 1234567890987654321, 123456789010987654321, 12345678901210987654321, 1234567890123210987654321, 123456789012343210987654321, 12345678901234543210987654321
Offset: 1

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Crossrefs

Alternative progression for n >= 10 compared with A002477.

Programs

  • Mathematica
    Array[FromDigits@ Join[#, Reverse@ Most@ #] &@ Mod[Range[#], 10] &, 15] (* Michael De Vlieger, Jan 28 2020 *)
  • PARI
    a(n)={fromdigits(vector(2*n-1, i, if(i<=n, i, 2*n-i)%10))} \\ Andrew Howroyd, Jan 27 2020

Formula

a(n) = 10^n*A057137(n-1) + A057138(n) = 10^(n-1)*A057137(n) + A057138(n-1).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Jan 27 2020

A137233 Number of n-digit even numbers.

Original entry on oeis.org

5, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 08 2008

Keywords

Comments

From Kival Ngaokrajang, Oct 18 2013: (Start)
a(n) is also the total number of double rows identified numbers in n digit.
For example:
n = 1: 01 23 45 67 89 = 5 double rows;
n = 2: 1011 1213 1415 1617 1819...9899 = 45 double rows;
n = 3: 100101 102103 104105...998999 = 450 double rows;
The number of double rows is also A030656. (End)
a(n) is also the number of n-digit integers with an even number of even digits (A356929); a(5) = 45000 is the answer to the question 2 of the Olympiade Mathématique Belge in 2004 (link). - Bernard Schott, Sep 06 2022
a(n) is also the number of n-digit integers with an odd number of odd digits (A054684). - Bernard Schott, Nov 07 2022

Examples

			a(2) = 45 because there are 45 2-digit even numbers.
		

Crossrefs

Programs

Formula

a(n) = 9*10^(n-1)/2 if n > 1. - R. J. Mathar, May 23 2008
From Elmo R. Oliveira, Jul 23 2025: (Start)
G.f.: 5*x*(1-x)/(1-10*x).
E.g.f.: (-9 + 10*x + 9*exp(10*x))/20.
a(n) = 10*a(n-1) for n > 2.
a(n) = A052268(n)/2 for n >= 2. (End)

Extensions

Corrected and extended by R. J. Mathar, May 23 2008
More terms from Elmo R. Oliveira, Jul 23 2025
Showing 1-4 of 4 results.