cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057137 Concatenate next digit at right hand end (where the next digit after 9 is again 0).

Original entry on oeis.org

0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Comments

Also called the triangle of the gods (see Pickover link).
See A037610 for a general formula. - Hieronymus Fischer, Jan 03 2013

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.

Crossrefs

Alternative progression for n >= 10 compared with A007908 and A014824.
Cf. A057138 for reverse. Cf. A010879 (decimal digits).
For primes see A120819.

Programs

Formula

a(n) = 10*(a(n-1)-floor[n/10]) + n = floor[A057139(n)/10^(n-1)].
a(n) = floor((137174210/1111111111)*10^n). - Hieronymus Fischer, Jan 03 2013, corrected by M. F. Hasler, Jan 13 2013

A057138 Add (n mod 10)*10^(n-1) to the previous term, with a(0) = 0.

Original entry on oeis.org

0, 1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 987654321, 10987654321, 210987654321, 3210987654321, 43210987654321, 543210987654321, 6543210987654321, 76543210987654321, 876543210987654321
Offset: 0

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Comments

Original definition: "Concatenate next digit at left hand end."
This is misleading, since the concatenation of 0 yields the same term (leading zeros vanish), but upon the next concatenation of 1, the 0 reappears - except for a(1), which according to that description should equal a(1)=10: It is surprising that in this only case where the 0 is indeed present, it disappears upon left-concatenation of the digit 1! - M. F. Hasler, Jan 13 2013
From Hieronymus Fischer, Jan 23 2013: (Start)
A definition which is also consistent is: Start with terms 0 and 1 and then concatenate the next digit at the left hand end. If the next digit is a zero, keep this zero in mind so that the following digit is a 1 preceding a 0.
The sequence terms are the terms of A057137 in reversed digit order. Based on this understanding, the anomaly for the indices 0 and 1 where the terms are 0 and 1 instead of 0 and 10 (what one would expect) becomes self-explaining. Also, the special behavior when the zero digit is encountered becomes clear.
Examples: a(3) = 321 = Reversal(A057137(3)),
a(10) = 987654321 = Reversal(A057137(10)) = Reversal(1234567890). (End)

Crossrefs

Alternative progression for n >= 10 compared with A000422 and A014925.
Cf. A057137 for reverse.

Programs

  • Maple
    ListTools:-PartialSums([seq((k mod 10)*10^(k-1), k=0..40)]); # Robert Israel, Jun 21 2017
  • Mathematica
    Join[{c = 0}, Table[c = c + Mod[n, 10]*10^(n - 1), {n, 18}]] (* T. D. Noe, Jan 30 2013 *)
    nxt[{n_,a_}]:={n+1,a+Mod[n+1,10]10^n}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Apr 06 2025 *)
  • PARI
    a(n)=sum(i=0,n,i%10*10^(i-1)) \\ M. F. Hasler, Jan 13 2013

Formula

a(n) = a(n-1) + 10^(n-1)*n - 10^n*floor(n/10) = A057139(n) mod 10^n.
a(n) = floor(((q/(10^10 - 1)) + q mod 10^(n mod 10))*10^(10*floor(n/10))), where q = 987654321. - Hieronymus Fischer, Jan 03 2013
G.f.: x(1-10(10x)^9 + 9(10x)^10)/((1-x) (1-10x)^2 (1-(10x)^10)). - Robert Israel, Jun 21 2017

Extensions

Better definition from M. F. Hasler, Jan 13 2013

A068792 a(n) = (n-1)*n^(n-2) + Sum_{i=1..n} (n-i)*(n^(n-i-1) + n^(n+i-3)).

Original entry on oeis.org

1, 16, 441, 24336, 2418025, 384473664, 89755965649, 28953439105600, 12345678987654321, 6727499948806851600, 4562491230669011577289, 3769449794266138309731600, 3727710895159027432980276121, 4348096581244536814777202995456, 5907679981266292758213173560296225
Offset: 2

Views

Author

Reinhard Zumkeller, Mar 04 2002

Keywords

Comments

a(n) is a palindrome in base n representation for all n.

Examples

			a(8) = 89755965649 = (1234567654321)OCT;
a(10) = 12345678987654321 = A057139(9);
a(16) = 5907679981266292758213173560296225 = (123456789ABC...987654321)HEX.
		

Crossrefs

Programs

  • Magma
    [((n^(n-1) -1)/(n-1))^2: n in [2..30]]; // G. C. Greubel, Aug 16 2022
    
  • Mathematica
    Table[((n^(n-1) -1)/(n-1))^2, {n,2,30}] (* G. C. Greubel, Aug 16 2022 *)
  • Python
    def A068792(n): return ((n**(n-1)-1)//(n-1))**2 # Chai Wah Wu, Mar 18 2024
  • SageMath
    [((n^(n-1) -1)/(n-1))^2 for n in (2..30)] # G. C. Greubel, Aug 16 2022
    

Formula

a(n) = ( (n^(n-1) - 1)/(n-1) )^2.
a(n) = ((A023811(n) - n + 1)/n)*n^(n-1) + A062813(n)/n.
a(n) = A060072(n)^2.

Extensions

More terms from G. C. Greubel, Aug 16 2022

A261072 Divisors of 1234567890987654321.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 57, 63, 133, 171, 399, 1197, 928163, 2784489, 6497141, 8353467, 17635097, 19491423, 52905291, 58474269, 123445679, 158715873, 370337037, 1111011111, 1111211111, 3333633333, 7778477777, 10000899999, 21113011109
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 08 2015

Keywords

Comments

1234567890987654321 = A057139(10) is a palindrome with 48 divisors. See the link with all divisors.
From Wolfdieter Lang, Aug 22 2015: (Start)
The palindromes of this sequence are 1, 3, 7, 9, 171, 1234567890987654321.
1234567890987654321 = 1111011111 * 1111211111 (observed by Jon E. Schoenfield).
The palindromic divisors of 1111011111 are 1, 3, 7, 9 and 171. The only palindromic divisor of 1111211111 is 1. Therefore, of the six palindromes of this sequence only 1234567890987654321 cannot be obtained from the product of the palindromic divisors of 1111011111 with those of 1111211111. (End)

Crossrefs

Programs

  • Magma
    [Divisors(1234567890987654321)]; // Vincenzo Librandi, Aug 09 2015
    
  • Maple
    numtheory[divisors](1234567890987654321); # Wesley Ivan Hurt, Aug 11 2015
  • Mathematica
    Divisors[1234567890987654321]
  • PARI
    divisors(1234567890987654321) \\ Wesley Ivan Hurt, Aug 11 2015
Showing 1-4 of 4 results.