cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057145 Square array of polygonal numbers T(n,k) = ((n-2)*k^2 - (n-4)*k)/2, n >= 2, k >= 1, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 10, 5, 1, 6, 12, 16, 15, 6, 1, 7, 15, 22, 25, 21, 7, 1, 8, 18, 28, 35, 36, 28, 8, 1, 9, 21, 34, 45, 51, 49, 36, 9, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11, 1, 12, 30, 52, 75, 96, 112
Offset: 2

Views

Author

N. J. A. Sloane, Sep 12 2000

Keywords

Comments

The set of the "nontrivial" entries T(n>=3,k>=3) is in A090466. - R. J. Mathar, Jul 28 2016
T(n,k) is the smallest number that can be expressed as the sum of k consecutive positive integers that differ by n - 2. In other words: T(n,k) is the sum of k terms of the arithmetic progression with common difference n - 2 and 1st term 1, (see the example). - Omar E. Pol, Apr 29 2020

Examples

			Array T(n k) (n >= 2, k >= 1) begins:
  1,  2,  3,  4,   5,   6,   7,   8,   9,  10,  11, ...
  1,  3,  6, 10,  15,  21,  28,  36,  45,  55,  66, ...
  1,  4,  9, 16,  25,  36,  49,  64,  81, 100, 121, ...
  1,  5, 12, 22,  35,  51,  70,  92, 117, 145, 176, ...
  1,  6, 15, 28,  45,  66,  91, 120, 153, 190, 231, ...
  1,  7, 18, 34,  55,  81, 112, 148, 189, 235, 286, ...
  1,  8, 21, 40,  65,  96, 133, 176, 225, 280, 341, ...
  1,  9, 24, 46,  75, 111, 154, 204, 261, 325, 396, ...
  1, 10, 27, 52,  85, 126, 175, 232, 297, 370, 451, ...
  1, 11, 30, 58,  95, 141, 196, 260, 333, 415, 506, ...
  1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, ...
  1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, ...
  1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, ...
-------------------------------------------------------
From _Wolfdieter Lang_, Nov 04 2014: (Start)
The triangle a(k, m) begins:
  k\m 1  2  3  4  5   6   7   8   9  10  11  12 13 14 ...
  2:  1
  3:  1  2
  4:  1  3  3
  5:  1  4  6  4
  6:  1  5  9 10  5
  7:  1  6 12 16 15   6
  8:  1  7 15 22 25  21   7
  9:  1  8 18 28 35  36  28   8
  10: 1  9 21 34 45  51  49  36   9
  11: 1 10 24 40 55  66  70  64  45  10
  12: 1 11 27 46 65  81  91  92  81  55  11
  13: 1 12 30 52 75  96 112 120 117 100  66  12
  14: 1 13 33 58 85 111 133 148 153 145 121  78 13
  15: 1 14 36 64 95 126 154 176 189 190 176 144 91 14
  ...
-------------------------------------------------------
a(2,1) = T(2,1), a(6, 3) = T(4, 3). (End)
.
From _Omar E. Pol_, May 03 2020: (Start)
Illustration of the corner of the square array:
.
  1       2         3           4
  O     O O     O O O     O O O O
.
  1       3         6          10
  O     O O     O O O     O O O O
          O       O O       O O O
                    O         O O
                                O
.
  1       4         9          16
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                                O
                                O
.
  1       5        12          22
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                    O         O O
                                O
                                O
                                O
(End)
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 189, 1966.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (Copernicus), p. 38, 1996.

Crossrefs

Many rows and columns of this array are in the database.
Cf. A055795 (antidiagonal sums), A064808 (main diagonal).

Programs

  • Magma
    /* As square array: */ t:=func; [[t(s,n): s in [1..11]]: n in [2..14]]; // Bruno Berselli, Jun 24 2013
  • Maple
    A057145 := proc(n,k)
        ((n-2)*k^2-(n-4)*k)/2 ;
    end proc:
    seq(seq(A057145(d-k,k),k=1..d-2),d=3..12); # R. J. Mathar, Jul 28 2016
  • Mathematica
    nn = 12; Flatten[Table[k (3 - k^2 - n + k*n)/2, {n, 2, nn}, {k, n - 1}]] (* T. D. Noe, Oct 10 2012 *)

Formula

T(2n+4,n) = n^3. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Aug 28 2000
T(n, k) = T(n-1, k) + k*(k-1)/2 [with T(2, k)=k] = T(n, k-1) + 1 + (n-2)*(k-1) [with T(n, 0)=0] = k + (n-2)k(k-1)/2 = k + A063212(n-2, k-1). - Henry Bottomley, Jul 11 2001
G.f. for row n: x*(1+(n-3)*x)/(1-x)^3, n>=2. - Paul Barry, Feb 21 2003
From Wolfdieter Lang, Nov 05 2014: (Start)
The triangle is a(n, m) = T(n-m+1, m) = (1/2)*m*(n*(m-1) + 3 - m^2) for n >= 2, m = 1, 2, ..., n-1 and zero elsewhere.
O.g.f. for column m (without leading zeros): (x*binomial(m,2) + (1+2*m-m^2)*(m/2)*(1-x))/(x^(m-1)*(1-x)^2). (End)
T(n,k) = A139600(n-2,k) = A086270(n-2,k). - R. J. Mathar, Jul 28 2016
Row sums of A077028: T(n+2,k+1) = Sum_{j=0..k} A077028(n,j), where A077028(n,k) = 1+n*k is the square array interpretation of A077028 (the 1D polygonal numbers). - R. J. Mathar, Jul 30 2016
G.f.: x^2*y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Apr 12 2024

Extensions

a(50)=49 corrected to a(50)=40 by Jean-François Alcover, Jul 22 2011
Edited: Name shortened, offset in Paul Barry's g.f. corrected and Conway-Guy reference added. - Wolfdieter Lang, Nov 04 2014