A057212 n-th run has length n.
0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
References
- K. H. Rosen, Discrete Mathematics and its Applications, 1999, fourth edition, page 79, exercise 10 (g).
Crossrefs
Programs
-
Haskell
a057212 n = a057212_list !! (n-1) a057212_list = concat $ zipWith ($) (map replicate [1..]) a000035_list -- Reinhard Zumkeller, Mar 18 2011
-
Maple
A002024 := n->round(sqrt(2*n)):A057212 := n->(1+(-1)^A002024(n))/2; # alternative Maple program: T:= n-> [irem(1+n, 2)$n][]: seq(T(n), n=1..14); # Alois P. Heinz, Oct 06 2021
-
Mathematica
Table[If[OddQ[n], 0, 1], {n, 1, 14}, {n}] // Flatten (* Jean-François Alcover, Mar 07 2021 *)
-
Python
from math import isqrt def A057212(n): return int(not isqrt(n<<3)+1&2) # Chai Wah Wu, Jun 19 2024
Formula
a(n)=A003056(n) mod 2 so as a square array T(n, k)=n+k mod 2 - Henry Bottomley, Mar 22 2001
a(n) = (1+(-1)^A002024(n))/2, where A002024(n)=round(sqrt(2*n)). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 23 2003
a(n)=A163334(n) mod 2 = A163336(n) mod 2 = A163357(n) mod 2 = A163359(n) mod 2, i.e. the array gives the parity of elements at the successive antidiagonals (alternating between 0 and 1) of square arrays constructed from ANY Hilbert curve starting from zero located at the top left corner of a square grid (and using only N,E,S,W steps of length one). - Antti Karttunen, Oct 22 2012
a(n) = 1 - A057211(n). - Alois P. Heinz, Oct 06 2021
Comments