A057216 To get next term, multiply by 17, add 1 and discard any prime factors < 17.
61, 173, 1471, 521, 4429, 4183, 2963, 257, 437, 743, 1579, 2237, 3803, 2309, 19627, 5561, 47269, 14881, 3833, 32581, 263, 43, 61, 173, 1471, 521, 4429, 4183, 2963, 257, 437, 743, 1579, 2237, 3803, 2309, 19627, 5561, 47269, 14881, 3833, 32581, 263, 43
Offset: 0
Examples
61 -> 17*61+1 = 1038 = 2*3*173 -> 173, so second term is 173.
Links
- Eric Weisstein's World of Mathematics, Collatz problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1).
Programs
-
Mathematica
a[n_] := a[n] = Which[n == 0, 61, n <= 22, Times @@ Power @@@ Select[ FactorInteger[17 a[n - 1] + 1], #[[1]] >= 17&], True, a[n - 22]]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Aug 21 2023 *)
-
PARI
lista(nn) = {my(x=61); for (n=1, nn, print1(x, ", "); my(f=factor(17*x+1)); for (k=1, #f~, if (f[k,1] < 17, f[k,1] = 1)); x = factorback(f););} \\ Michel Marcus, Jan 19 2021
Extensions
More terms from James Sellers and Larry Reeves (larryr(AT)acm.org), Oct 18 2000
Comments